// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #pragma once /// @file AC_AttitudeControl.h /// @brief ArduCopter attitude control library #include #include #include #include #include #include #include #include // TODO: change the name or move to AP_Math? eliminate in favor of degrees(100)? #define AC_ATTITUDE_CONTROL_DEGX100 5729.57795f // constant to convert from radians to centidegrees #define AC_ATTITUDE_CONTROL_ANGLE_P 4.5f // default angle P gain for roll, pitch and yaw #define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS radians(40.0f) // minimum body-frame acceleration limit for the stability controller (for roll and pitch axis) #define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS radians(720.0f) // maximum body-frame acceleration limit for the stability controller (for roll and pitch axis) #define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS radians(10.0f) // minimum body-frame acceleration limit for the stability controller (for yaw axis) #define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS radians(360.0f) // maximum body-frame acceleration limit for the stability controller (for yaw axis) #define AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS 1000 // constraint on yaw angle error in degrees. This should lead to maximum turn rate of 10deg/sed * Stab Rate P so by default will be 45deg/sec. #define AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS 110000.0f // default maximum acceleration for roll/pitch axis in centidegrees/sec/sec #define AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS 27000.0f // default maximum acceleration for yaw axis in centidegrees/sec/sec #define AC_ATTITUDE_RATE_CONTROLLER_TIMEOUT 1.0f // body-frame rate controller timeout in seconds #define AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX 1.0f // body-frame rate controller maximum output (for roll-pitch axis) #define AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX 1.0f // body-frame rate controller maximum output (for yaw axis) #define AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD radians(300.0f) // earth-frame rate stabilize controller's maximum overshoot angle (never limited) #define AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX_RAD radians(300.0f) // earth-frame rate stabilize controller's maximum overshoot angle (never limited) #define AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD radians(10.0f) // earth-frame rate stabilize controller's maximum overshoot angle #define AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD radians(30.0f) // earth-frame rate stabilize controller's maximum overshoot angle #define AC_ATTITUDE_100HZ_DT 0.0100f // delta time in seconds for 100hz update rate #define AC_ATTITUDE_400HZ_DT 0.0025f // delta time in seconds for 400hz update rate #define AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT 1 // body-frame rate feedforward enabled by default #define AC_ATTITUDE_CONTROL_ALTHOLD_LEANANGLE_FILT_HZ 1.0f // filter (in hz) of throttle filter used to limit lean angle so that vehicle does not lose altitude class AC_AttitudeControl { public: AC_AttitudeControl( AP_AHRS &ahrs, const AP_Vehicle::MultiCopter &aparm, AP_Motors& motors, float dt) : _p_angle_roll(AC_ATTITUDE_CONTROL_ANGLE_P), _p_angle_pitch(AC_ATTITUDE_CONTROL_ANGLE_P), _p_angle_yaw(AC_ATTITUDE_CONTROL_ANGLE_P), _dt(dt), _angle_boost(0), _att_ctrl_use_accel_limit(true), _throttle_in_filt(AC_ATTITUDE_CONTROL_ALTHOLD_LEANANGLE_FILT_HZ), _ahrs(ahrs), _aparm(aparm), _motors(motors) { AP_Param::setup_object_defaults(this, var_info); } // Empty destructor to suppress compiler warning virtual ~AC_AttitudeControl() {} // pid accessors AC_P& get_angle_roll_p() { return _p_angle_roll; } AC_P& get_angle_pitch_p() { return _p_angle_pitch; } AC_P& get_angle_yaw_p() { return _p_angle_yaw; } virtual AC_PID& get_rate_roll_pid() = 0; virtual AC_PID& get_rate_pitch_pid() = 0; virtual AC_PID& get_rate_yaw_pid() = 0; // Gets the roll acceleration limit in centidegrees/s/s float get_accel_roll_max() { return _accel_roll_max; } // Sets the roll acceleration limit in centidegrees/s/s void set_accel_roll_max(float accel_roll_max) { _accel_roll_max = accel_roll_max; } // Sets and saves the roll acceleration limit in centidegrees/s/s void save_accel_roll_max(float accel_roll_max) { _accel_roll_max = accel_roll_max; _accel_roll_max.save(); } // Sets the pitch acceleration limit in centidegrees/s/s float get_accel_pitch_max() { return _accel_pitch_max; } // Sets the pitch acceleration limit in centidegrees/s/s void set_accel_pitch_max(float accel_pitch_max) { _accel_pitch_max = accel_pitch_max; } // Sets and saves the pitch acceleration limit in centidegrees/s/s void save_accel_pitch_max(float accel_pitch_max) { _accel_pitch_max = accel_pitch_max; _accel_pitch_max.save(); } // Gets the yaw acceleration limit in centidegrees/s/s float get_accel_yaw_max() { return _accel_yaw_max; } // Sets the yaw acceleration limit in centidegrees/s/s void set_accel_yaw_max(float accel_yaw_max) { _accel_yaw_max = accel_yaw_max; } // Sets and saves the yaw acceleration limit in centidegrees/s/s void save_accel_yaw_max(float accel_yaw_max) { _accel_yaw_max = accel_yaw_max; _accel_yaw_max.save(); } // Ensure body-frame rate controller has zero errors to relax rate controller output void relax_bf_rate_controller(); // Sets yaw target to vehicle heading void set_yaw_target_to_current_heading() { _att_target_euler_rad.z = _ahrs.yaw; } // Shifts earth frame yaw target by yaw_shift_cd. yaw_shift_cd should be in centidegrees and is added to the current target heading void shift_ef_yaw_target(float yaw_shift_cd); // Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing void input_euler_angle_roll_pitch_euler_rate_yaw_smooth(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds, float smoothing_gain); // Command an euler roll and pitch angle and an euler yaw rate void input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds); // Command an euler roll, pitch and yaw angle void input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw); // Command an euler roll, pitch, and yaw rate void input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds); // Command an angular velocity virtual void input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds); // Command a quaternion attitude and a body-frame angular velocity void input_att_quat_bf_ang_vel(const Quaternion& att_target_quat, const Vector3f& att_target_ang_vel_rads); // Run angular velocity controller and send outputs to the motors virtual void rate_controller_run(); // Convert a 321-intrinsic euler angle derivative to an angular velocity vector void euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads); // Convert an angular velocity vector to a 321-intrinsic euler angle derivative // Returns false if the vehicle is pitched 90 degrees up or down bool ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads); // Configures whether the attitude controller should limit the rate demand to constrain angular acceleration void limit_angle_to_rate_request(bool limit_request) { _att_ctrl_use_accel_limit = limit_request; } // Return 321-intrinsic euler angles in centidegrees representing the rotation from NED earth frame to the // attitude controller's reference attitude. Vector3f get_att_target_euler_cd() const { return _att_target_euler_rad*degrees(100.0f); } // Return a rotation vector in centidegrees representing the rotation from vehicle body frame to the // attitude controller's reference attitude. Vector3f get_att_error_rot_vec_cd() const { return _att_error_rot_vec_rad*degrees(100.0f); } // Set x-axis angular velocity reference in centidegrees/s void rate_bf_roll_target(float rate_cds) { _ang_vel_target_rads.x = radians(rate_cds*0.01f); } // Set y-axis angular velocity reference in centidegrees/s void rate_bf_pitch_target(float rate_cds) { _ang_vel_target_rads.y = radians(rate_cds*0.01f); } // Set z-axis angular velocity reference in centidegrees/s void rate_bf_yaw_target(float rate_cds) { _ang_vel_target_rads.z = radians(rate_cds*0.01f); } // Return roll rate step size in centidegrees/s that results in maximum output after 4 time steps float max_rate_step_bf_roll(); // Return pitch rate step size in centidegrees/s that results in maximum output after 4 time steps float max_rate_step_bf_pitch(); // Return yaw rate step size in centidegrees/s that results in maximum output after 4 time steps float max_rate_step_bf_yaw(); // Return roll step size in centidegrees that results in maximum output after 4 time steps float max_angle_step_bf_roll() { return max_rate_step_bf_roll()/_p_angle_roll.kP(); } // Return pitch step size in centidegrees that results in maximum output after 4 time steps float max_angle_step_bf_pitch() { return max_rate_step_bf_pitch()/_p_angle_pitch.kP(); } // Return yaw step size in centidegrees that results in maximum output after 4 time steps float max_angle_step_bf_yaw() { return max_rate_step_bf_yaw()/_p_angle_yaw.kP(); } // Return reference angular velocity used in the angular velocity controller Vector3f rate_bf_targets() const { return _ang_vel_target_rads*degrees(100.0f); } // Enable or disable body-frame feed forward void bf_feedforward(bool enable_or_disable) { _rate_bf_ff_enabled = enable_or_disable; } // Enable or disable body-frame feed forward and save void bf_feedforward_save(bool enable_or_disable) { _rate_bf_ff_enabled.set_and_save(enable_or_disable); } // Return body-frame feed forward setting bool get_bf_feedforward() { return _rate_bf_ff_enabled; } // Enable or disable body-frame feed forward void accel_limiting(bool enable_or_disable); // Set output throttle void set_throttle_out(float throttle_in, bool apply_angle_boost, float filt_cutoff); // Set output throttle and disable stabilization void set_throttle_out_unstabilized(float throttle_in, bool reset_attitude_control, float filt_cutoff); // get throttle passed into attitude controller (i.e. throttle_in provided to set_throttle_out) float get_throttle_in() const { return _throttle_in; } // Return throttle increase applied for tilt compensation float angle_boost() const { return _angle_boost; } // Return tilt angle limit for pilot input that prioritises altitude hold over lean angle virtual float get_althold_lean_angle_max() const = 0; // Return configured tilt angle limit in centidegrees float lean_angle_max() const { return _aparm.angle_max; } // Proportional controller with piecewise sqrt sections to constrain second derivative static float sqrt_controller(float error, float p, float second_ord_lim); // User settable parameters static const struct AP_Param::GroupInfo var_info[]; protected: // Retrieve a rotation matrix from the vehicle body frame to NED earth frame void get_rotation_vehicle_to_ned(Matrix3f& m); // Retrieve a rotation matrix from NED earth frame to the vehicle body frame void get_rotation_ned_to_vehicle(Matrix3f& m); // Retrieve a rotation matrix from reference (setpoint) body frame to NED earth frame void get_rotation_reference_to_ned(Matrix3f& m); // Retrieve a rotation matrix from NED earth frame to reference (setpoint) body frame void get_rotation_ned_to_reference(Matrix3f& m); // Retrieve a rotation matrix from vehicle body frame to reference (setpoint) body frame void get_rotation_vehicle_to_reference(Matrix3f& m); // Retrieve a rotation matrix from reference (setpoint) body frame to vehicle body frame void get_rotation_reference_to_vehicle(Matrix3f& m); // Command an euler attitude and a body-frame angular velocity void attitude_controller_run_euler(const Vector3f& att_target_euler_rad, const Vector3f& att_target_ang_vel_rads); // Command a quaternion attitude and a body-frame angular velocity void attitude_controller_run_quat(const Quaternion& att_target_quat, const Vector3f& att_target_ang_vel_rads); // Update _att_target_euler_rad.x by integrating a 321-intrinsic euler roll angle derivative void update_att_target_roll(float euler_roll_rate_rads, float overshoot_max_rad); // Update _att_target_euler_rad.y by integrating a 321-intrinsic euler pitch angle derivative void update_att_target_pitch(float euler_pitch_rate_rads, float overshoot_max_rad); // Update _att_target_euler_rad.z by integrating a 321-intrinsic euler yaw angle derivative void update_att_target_yaw(float euler_yaw_rate_rads, float overshoot_max_rad); // Integrate vehicle rate into _att_error_rot_vec_rad void integrate_bf_rate_error_to_angle_errors(); // Update _ang_vel_target_rads using _att_error_rot_vec_rad void update_ang_vel_target_from_att_error(); // Run the roll angular velocity PID controller and return the output float rate_bf_to_motor_roll(float rate_target_rads); // Run the pitch angular velocity PID controller and return the output float rate_bf_to_motor_pitch(float rate_target_rads); // Run the yaw angular velocity PID controller and return the output virtual float rate_bf_to_motor_yaw(float rate_target_rads); // Compute a throttle value that is adjusted for the tilt angle of the vehicle virtual float get_boosted_throttle(float throttle_in) = 0; // Return angle in radians to be added to roll angle. Used by heli to counteract // tail rotor thrust in hover. Overloaded by AC_Attitude_Heli to return angle. virtual float get_roll_trim_rad() { return 0;} // Return the roll axis acceleration limit in radians/s/s float get_accel_roll_max_radss() { return radians(_accel_roll_max*0.01f); } // Return the pitch axis acceleration limit in radians/s/s float get_accel_pitch_max_radss() { return radians(_accel_pitch_max*0.01f); } // Return the yaw axis acceleration limit in radians/s/s float get_accel_yaw_max_radss() { return radians(_accel_yaw_max*0.01f); } // Return the yaw slew rate limit in radians/s float get_slew_yaw_rads() { return radians(_slew_yaw*0.01f); } // Return the tilt angle limit in radians float get_tilt_limit_rad() { return radians(_aparm.angle_max*0.01f); } // Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes AP_Float _slew_yaw; // Maximum rotation acceleration for earth-frame roll axis AP_Float _accel_roll_max; // Maximum rotation acceleration for earth-frame pitch axis AP_Float _accel_pitch_max; // Maximum rotation acceleration for earth-frame yaw axis AP_Float _accel_yaw_max; // Enable/Disable body frame rate feed forward AP_Int8 _rate_bf_ff_enabled; // Enable/Disable angle boost AP_Int8 _angle_boost_enabled; // angle controller P objects AC_P _p_angle_roll; AC_P _p_angle_pitch; AC_P _p_angle_yaw; // Intersampling period in seconds float _dt; // This represents a 321-intrinsic rotation from NED frame to the reference (setpoint) // attitude used in the attitude controller, in radians. Formerly _angle_ef_target. Vector3f _att_target_euler_rad; // This represents an euler axis-angle rotation vector from the vehicle’s // estimated attitude to the reference (setpoint) attitude used in the attitude // controller, in radians in the vehicle body frame of reference. Formerly // _angle_bf_error. Vector3f _att_error_rot_vec_rad; // This represents the angular velocity of the reference (setpoint) attitude used in // the attitude controller as 321-intrinsic euler angle derivatives, in radians per // second. Formerly _rate_ef_desired. Vector3f _att_target_euler_rate_rads; // This represents the angular velocity of the reference (setpoint) attitude used in // the attitude controller as an angular velocity vector, in radians per second in // the reference attitude frame. Formerly _rate_bf_desired. Vector3f _att_target_ang_vel_rads; // This represents the reference (setpoint) angular velocity used in the angular // velocity controller, in radians per second. Formerly _rate_bf_target. Vector3f _ang_vel_target_rads; // throttle provided as input to attitude controller. This does not include angle boost. // Used only for logging. float _throttle_in = 0.0f; // This represents the throttle increase applied for tilt compensation. // Used only for logging. float _angle_boost; // Specifies whether the attitude controller should use the acceleration limit bool _att_ctrl_use_accel_limit; // Filtered throttle input - used to limit lean angle when throttle is saturated LowPassFilterFloat _throttle_in_filt; // References to external libraries const AP_AHRS& _ahrs; const AP_Vehicle::MultiCopter &_aparm; AP_Motors& _motors; private: /* state of control monitoring */ struct { float rms_roll_P; float rms_roll_D; float rms_pitch_P; float rms_pitch_D; float rms_yaw; } _control_monitor; // update state in ControlMonitor void control_monitor_filter_pid(float value, float &rms_P); void control_monitor_update(void); public: // log a CTRL message void control_monitor_log(void); // return current RMS controller filter for each axis float control_monitor_rms_output_roll(void) const; float control_monitor_rms_output_roll_P(void) const; float control_monitor_rms_output_roll_D(void) const; float control_monitor_rms_output_pitch_P(void) const; float control_monitor_rms_output_pitch_D(void) const; float control_monitor_rms_output_pitch(void) const; float control_monitor_rms_output_yaw(void) const; }; #define AC_ATTITUDE_CONTROL_LOG_FORMAT(msg) { msg, sizeof(AC_AttitudeControl::log_Attitude), \ "ATT", "cccccCC", "RollIn,Roll,PitchIn,Pitch,YawIn,Yaw,NavYaw" }