/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static void read_control_switch() { static bool switch_debouncer = false; byte switchPosition = readSwitch(); if (oldSwitchPosition != switchPosition){ if(switch_debouncer){ oldSwitchPosition = switchPosition; switch_debouncer = false; set_mode(flight_modes[switchPosition]); if(g.ch7_option != CH7_SIMPLE_MODE){ // set Simple mode using stored paramters from Mission planner // rather than by the control switch do_simple = (g.simple_modes & (1 << switchPosition)); } }else{ switch_debouncer = true; } } } static byte readSwitch(void){ int pulsewidth = g.rc_5.radio_in; // default for Arducopter if (pulsewidth > 1230 && pulsewidth <= 1360) return 1; if (pulsewidth > 1360 && pulsewidth <= 1490) return 2; if (pulsewidth > 1490 && pulsewidth <= 1620) return 3; if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual if (pulsewidth >= 1750) return 5; // Hardware Manual return 0; } static void reset_control_switch() { oldSwitchPosition = -1; read_control_switch(); } #define CH_7_PWM_TRIGGER 1800 // read at 10 hz // set this to your trainer switch static void read_trim_switch() { #if CH7_OPTION == CH7_FLIP if (g.rc_7.radio_in > CH_7_PWM_TRIGGER && g.rc_3.control_in != 0){ init_flip(); } #elif CH7_OPTION == CH7_SET_HOVER // switch is engaged if (g.rc_7.radio_in > CH_7_PWM_TRIGGER){ trim_flag = true; }else{ // switch is disengaged if(trim_flag){ trim_flag = false; // set the throttle nominal if(g.rc_3.control_in > 150){ g.throttle_cruise.set_and_save(g.rc_3.control_in); //Serial.printf("tnom %d\n", g.throttle_cruise.get()); } } } #else // this is the normal operation set by the mission planner if(g.ch7_option == CH7_SIMPLE_MODE){ do_simple = (g.rc_7.radio_in > CH_7_PWM_TRIGGER); }else if (g.ch7_option == CH7_RTL){ if (trim_flag == false && g.rc_7.radio_in > CH_7_PWM_TRIGGER){ trim_flag = true; set_mode(RTL); } if (trim_flag == true && g.rc_7.control_in < 800){ trim_flag = false; if (control_mode == RTL || control_mode == LOITER){ reset_control_switch(); } } }else if (g.ch7_option == CH7_SAVE_WP){ if (g.rc_7.radio_in > CH_7_PWM_TRIGGER){ // switch is engaged trim_flag = true; }else{ // switch is disengaged if(trim_flag){ trim_flag = false; if(control_mode == AUTO){ // reset the mission CH7_wp_index = 0; g.command_total.set_and_save(1); set_mode(RTL); return; } if(CH7_wp_index == 0){ // this is our first WP, let's save WP 1 as a takeoff // increment index to WP index of 1 (home is stored at 0) CH7_wp_index = 1; // set our location ID to 16, MAV_CMD_NAV_WAYPOINT current_loc.id = MAV_CMD_NAV_TAKEOFF; // save command: // we use the current altitude to be the target for takeoff. // only altitude will matter to the AP mission script for takeoff. // If we are above the altitude, we will skip the command. set_cmd_with_index(current_loc, CH7_wp_index); } // increment index CH7_wp_index++; // set the next_WP (home is stored at 0) // max out at 100 since I think we need to stay under the EEPROM limit CH7_wp_index = constrain(CH7_wp_index, 1, 100); if(g.rc_3.control_in > 0){ // set our location ID to 16, MAV_CMD_NAV_WAYPOINT current_loc.id = MAV_CMD_NAV_WAYPOINT; }else{ // set our location ID to 21, MAV_CMD_NAV_LAND current_loc.id = MAV_CMD_NAV_LAND; } // save command set_cmd_with_index(current_loc, CH7_wp_index); copter_leds_nav_blink = 10; // Cause the CopterLEDs to blink twice to indicate saved waypoint // 0 = home // 1 = takeoff // 2 = WP 2 // 3 = command total } } }else if (g.ch7_option == CH7_AUTO_TRIM){ if (g.rc_7.radio_in > CH_7_PWM_TRIGGER){ auto_level_counter = 10; } } #endif } static void auto_trim() { if(auto_level_counter > 0){ //g.rc_1.dead_zone = 60; // 60 = .6 degrees //g.rc_2.dead_zone = 60; auto_level_counter--; trim_accel(); led_mode = AUTO_TRIM_LEDS; do_simple = false; if(auto_level_counter == 1){ //g.rc_1.dead_zone = 0; // 60 = .6 degrees //g.rc_2.dead_zone = 0; led_mode = NORMAL_LEDS; clear_leds(); imu.save(); reset_control_switch(); //Serial.println("Done"); auto_level_counter = 0; } } } /* How this works: Level Example: A_off: -14.00, -20.59, -30.80 Right roll Example: A_off: -6.73, 89.05, -46.02 Left Roll Example: A_off: -18.11, -160.31, -56.42 Pitch Forward: A_off: -127.00, -22.16, -50.09 Pitch Back: A_off: 201.95, -24.00, -88.56 */ static void trim_accel() { reset_stability_I(); float trim_roll = (float)g.rc_1.control_in / 30000.0; float trim_pitch = (float)g.rc_2.control_in / 30000.0; trim_roll = constrain(trim_roll, -1.5, 1.5); trim_pitch = constrain(trim_pitch, -1.5, 1.5); if(g.rc_1.control_in > 200){ // Roll Right imu.ay(imu.ay() - trim_roll); }else if (g.rc_1.control_in < -200){ imu.ay(imu.ay() - trim_roll); } if(g.rc_2.control_in > 200){ // Pitch Back imu.ax(imu.ax() + trim_pitch); }else if (g.rc_2.control_in < -200){ imu.ax(imu.ax() + trim_pitch); } /* Serial.printf_P(PSTR("r:%1.2f %1.2f \t| p:%1.2f %1.2f\n"), trim_roll, (float)imu.ay(), trim_pitch, (float)imu.ax()); //*/ }