// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // Functions called from the setup menu static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); static int8_t setup_motors (uint8_t argc, const Menu::arg *argv); static int8_t setup_accel (uint8_t argc, const Menu::arg *argv); static int8_t setup_frame (uint8_t argc, const Menu::arg *argv); static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv); static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); //static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv); static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); static int8_t setup_esc (uint8_t argc, const Menu::arg *argv); #ifdef OPTFLOW_ENABLED static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv); #endif static int8_t setup_show (uint8_t argc, const Menu::arg *argv); #if FRAME_CONFIG == HELI_FRAME static int8_t setup_heli (uint8_t argc, const Menu::arg *argv); static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv); #endif // Command/function table for the setup menu const struct Menu::command setup_menu_commands[] PROGMEM = { // command function called // ======= =============== {"erase", setup_erase}, {"reset", setup_factory}, {"radio", setup_radio}, {"frame", setup_frame}, {"motors", setup_motors}, {"esc", setup_esc}, {"level", setup_accel}, {"modes", setup_flightmodes}, {"battery", setup_batt_monitor}, {"sonar", setup_sonar}, {"compass", setup_compass}, // {"offsets", setup_mag_offset}, {"declination", setup_declination}, #ifdef OPTFLOW_ENABLED {"optflow", setup_optflow}, #endif #if FRAME_CONFIG == HELI_FRAME {"heli", setup_heli}, {"gyro", setup_gyro}, #endif {"show", setup_show} }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. static int8_t setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance Serial.printf_P(PSTR("Setup Mode\n\n\n")); //"\n" //"IMPORTANT: if you have not previously set this system up, use the\n" //"'reset' command to initialize the EEPROM to sensible default values\n" //"and then the 'radio' command to configure for your radio.\n" //"\n")); if(g.rc_1.radio_min >= 1300){ delay(1000); Serial.printf_P(PSTR("\n!Warning, your radio is not configured!")); delay(1000); Serial.printf_P(PSTR("\n Type 'radio' to configure now.\n\n")); } // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); return 0; } // Print the current configuration. // Called by the setup menu 'show' command. static int8_t setup_show(uint8_t argc, const Menu::arg *argv) { // clear the area print_blanks(8); report_version(); report_radio(); report_frame(); report_batt_monitor(); report_sonar(); //report_gains(); //report_xtrack(); //report_throttle(); report_flight_modes(); report_imu(); report_compass(); #ifdef OPTFLOW_ENABLED report_optflow(); #endif #if FRAME_CONFIG == HELI_FRAME report_heli(); report_gyro(); #endif AP_Var_menu_show(argc, argv); return(0); } // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. static int8_t setup_factory(uint8_t argc, const Menu::arg *argv) { int c; Serial.printf_P(PSTR("\n'Y' + Enter to factory reset, any other key to abort:\n")); do { c = Serial.read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); AP_Var::erase_all(); Serial.printf_P(PSTR("\nFACTORY RESET complete - reboot APM")); delay(1000); //default_gains(); for (;;) { } // note, cannot actually return here return(0); } // Perform radio setup. // Called by the setup menu 'radio' command. static int8_t setup_radio(uint8_t argc, const Menu::arg *argv) { Serial.println("\n\nRadio Setup:"); uint8_t i; for(i = 0; i < 100;i++){ delay(20); read_radio(); } if(g.rc_1.radio_in < 500){ while(1){ //Serial.printf_P(PSTR("\nNo radio; Check connectors.")); delay(1000); // stop here } } g.rc_1.radio_min = g.rc_1.radio_in; g.rc_2.radio_min = g.rc_2.radio_in; g.rc_3.radio_min = g.rc_3.radio_in; g.rc_4.radio_min = g.rc_4.radio_in; g.rc_5.radio_min = g.rc_5.radio_in; g.rc_6.radio_min = g.rc_6.radio_in; g.rc_7.radio_min = g.rc_7.radio_in; g.rc_8.radio_min = g.rc_8.radio_in; g.rc_1.radio_max = g.rc_1.radio_in; g.rc_2.radio_max = g.rc_2.radio_in; g.rc_3.radio_max = g.rc_3.radio_in; g.rc_4.radio_max = g.rc_4.radio_in; g.rc_5.radio_max = g.rc_5.radio_in; g.rc_6.radio_max = g.rc_6.radio_in; g.rc_7.radio_max = g.rc_7.radio_in; g.rc_8.radio_max = g.rc_8.radio_in; g.rc_1.radio_trim = g.rc_1.radio_in; g.rc_2.radio_trim = g.rc_2.radio_in; g.rc_4.radio_trim = g.rc_4.radio_in; // 3 is not trimed g.rc_5.radio_trim = 1500; g.rc_6.radio_trim = 1500; g.rc_7.radio_trim = 1500; g.rc_8.radio_trim = 1500; Serial.printf_P(PSTR("\nMove all controls to each extreme. Hit Enter to save: ")); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); g.rc_1.update_min_max(); g.rc_2.update_min_max(); g.rc_3.update_min_max(); g.rc_4.update_min_max(); g.rc_5.update_min_max(); g.rc_6.update_min_max(); g.rc_7.update_min_max(); g.rc_8.update_min_max(); if(Serial.available() > 0){ delay(20); Serial.flush(); g.rc_1.save_eeprom(); g.rc_2.save_eeprom(); g.rc_3.save_eeprom(); g.rc_4.save_eeprom(); g.rc_5.save_eeprom(); g.rc_6.save_eeprom(); g.rc_7.save_eeprom(); g.rc_8.save_eeprom(); print_done(); break; } } report_radio(); return(0); } static int8_t setup_esc(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nESC Calibration:\n" "-1 Unplug USB and battery\n" "-2 Move CLI/FLY switch to FLY mode\n" "-3 Move throttle to max, connect battery\n" "-4 After two long beeps, throttle to 0, then test\n\n" " Press Enter to cancel.\n")); g.esc_calibrate.set_and_save(1); while(1){ delay(20); if(Serial.available() > 0){ g.esc_calibrate.set_and_save(0); return(0); } } } static int8_t setup_motors(uint8_t argc, const Menu::arg *argv) { while(1){ delay(20); read_radio(); output_motor_test(); if(Serial.available() > 0){ g.esc_calibrate.set_and_save(0); return(0); } } } static int8_t setup_accel(uint8_t argc, const Menu::arg *argv) { imu.init_accel(); print_accel_offsets(); report_imu(); return(0); } static int8_t setup_frame(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("x"))) { g.frame_orientation.set_and_save(X_FRAME); } else if (!strcmp_P(argv[1].str, PSTR("p"))) { g.frame_orientation.set_and_save(PLUS_FRAME); } else if (!strcmp_P(argv[1].str, PSTR("+"))) { g.frame_orientation.set_and_save(PLUS_FRAME); } else if (!strcmp_P(argv[1].str, PSTR("v"))) { g.frame_orientation.set_and_save(V_FRAME); }else{ Serial.printf_P(PSTR("\nOptions:[x,+,v]\n")); report_frame(); return 0; } report_frame(); return 0; } static int8_t setup_flightmodes(uint8_t argc, const Menu::arg *argv) { byte _switchPosition = 0; byte _oldSwitchPosition = 0; byte mode = 0; Serial.printf_P(PSTR("\nMove RC toggle switch to each position to edit, move aileron stick to select modes.")); print_hit_enter(); while(1){ delay(20); read_radio(); _switchPosition = readSwitch(); // look for control switch change if (_oldSwitchPosition != _switchPosition){ mode = flight_modes[_switchPosition]; mode = constrain(mode, 0, NUM_MODES-1); // update the user print_switch(_switchPosition, mode); // Remember switch position _oldSwitchPosition = _switchPosition; } // look for stick input if (radio_input_switch() == true){ mode++; if(mode >= NUM_MODES) mode = 0; // save new mode flight_modes[_switchPosition] = mode; // print new mode print_switch(_switchPosition, mode); } // escape hatch if(Serial.available() > 0){ for (mode=0; mode<6; mode++) flight_modes[mode].save(); print_done(); report_flight_modes(); return (0); } } } static int8_t setup_declination(uint8_t argc, const Menu::arg *argv) { compass.set_declination(radians(argv[1].f)); report_compass(); return 0; } static int8_t setup_erase(uint8_t argc, const Menu::arg *argv) { zero_eeprom(); return 0; } static int8_t setup_compass(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { g.compass_enabled.set_and_save(true); init_compass(); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { clear_offsets(); g.compass_enabled.set_and_save(false); }else{ Serial.printf_P(PSTR("\nOptions:[on,off]\n")); report_compass(); return 0; } g.compass_enabled.save(); report_compass(); return 0; } static int8_t setup_batt_monitor(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("off"))) { g.battery_monitoring.set_and_save(0); } else if(argv[1].i > 0 && argv[1].i <= 4){ g.battery_monitoring.set_and_save(argv[1].i); } else { Serial.printf_P(PSTR("\nOptions: off, 1-4")); } report_batt_monitor(); return 0; } static int8_t setup_sonar(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { g.sonar_enabled.set_and_save(true); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { g.sonar_enabled.set_and_save(false); }else{ Serial.printf_P(PSTR("\nOptions:[on, off]\n")); report_sonar(); return 0; } report_sonar(); return 0; } #if FRAME_CONFIG == HELI_FRAME // Perform heli setup. // Called by the setup menu 'radio' command. static int8_t setup_heli(uint8_t argc, const Menu::arg *argv) { uint8_t active_servo = 0; int value = 0; int temp; int state = 0; // 0 = set rev+pos, 1 = capture min/max int max_roll, max_pitch, min_coll, max_coll, min_tail, max_tail; // initialise swash plate heli_init_swash(); // source swash plate movements directly from heli_manual_override = true; // display initial settings report_heli(); // display help Serial.printf_P(PSTR("Instructions:")); print_divider(); Serial.printf_P(PSTR("\td\t\tdisplay settings\n")); Serial.printf_P(PSTR("\t1~4\t\tselect servo\n")); Serial.printf_P(PSTR("\ta or z\t\tmove mid up/down\n")); Serial.printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n")); Serial.printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n")); Serial.printf_P(PSTR("\tp\tset pos (i.e. p0 = front, p90 = right)\n")); Serial.printf_P(PSTR("\tr\t\treverse servo\n")); Serial.printf_P(PSTR("\tt\tset trim (-500 ~ 500)\n")); Serial.printf_P(PSTR("\tx\t\texit & save\n")); // start capturing while( value != 'x' ) { // read radio although we don't use it yet read_radio(); // record min/max if( state == 1 ) { if( abs(g.rc_1.control_in) > max_roll ) max_roll = abs(g.rc_1.control_in); if( abs(g.rc_2.control_in) > max_pitch ) max_pitch = abs(g.rc_2.control_in); if( g.rc_3.radio_in < min_coll ) min_coll = g.rc_3.radio_in; if( g.rc_3.radio_in > max_coll ) max_coll = g.rc_3.radio_in; min_tail = min(g.rc_4.radio_in, min_tail); max_tail = max(g.rc_4.radio_in, max_tail); //Serial.printf_P(PSTR("4: ri:%d \tro:%d \tso:%d \n"), (int)g.rc_4.radio_in, (int)g.rc_4.radio_out, (int)g.rc_4.servo_out); } if( Serial.available() ) { value = Serial.read(); // process the user's input switch( value ) { case '1': active_servo = CH_1; break; case '2': active_servo = CH_2; break; case '3': active_servo = CH_3; break; case '4': active_servo = CH_4; break; case 'a': case 'A': heli_get_servo(active_servo)->radio_trim += 10; break; case 'c': case 'C': if( g.rc_3.radio_in >= 900 && g.rc_3.radio_in <= 2100 ) { g.heli_coll_mid = g.rc_3.radio_in; Serial.printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)g.heli_coll_mid); } break; case 'd': case 'D': // display settings report_heli(); break; case 'm': case 'M': if( state == 0 ) { state = 1; // switch to capture min/max mode Serial.printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n"),active_servo+1, temp); // reset servo ranges g.heli_roll_max = g.heli_pitch_max = 4500; g.heli_coll_min = 1000; g.heli_coll_max = 2000; g.heli_servo_4.radio_min = 1000; g.heli_servo_4.radio_max = 2000; // set sensible values in temp variables max_roll = abs(g.rc_1.control_in); max_pitch = abs(g.rc_2.control_in); min_coll = 2000; max_coll = 1000; min_tail = max_tail = abs(g.rc_4.radio_in); }else{ state = 0; // switch back to normal mode // double check values aren't totally terrible if( max_roll <= 1000 || max_pitch <= 1000 || (max_coll - min_coll < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 ) Serial.printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_coll,max_coll,min_tail,max_tail); else{ g.heli_roll_max = max_roll; g.heli_pitch_max = max_pitch; g.heli_coll_min = min_coll; g.heli_coll_max = max_coll; g.heli_servo_4.radio_min = min_tail; g.heli_servo_4.radio_max = max_tail; // reinitialise swash heli_init_swash(); // display settings report_heli(); } } break; case 'p': case 'P': temp = read_num_from_serial(); if( temp >= -360 && temp <= 360 ) { if( active_servo == CH_1 ) g.heli_servo1_pos = temp; if( active_servo == CH_2 ) g.heli_servo2_pos = temp; if( active_servo == CH_3 ) g.heli_servo3_pos = temp; heli_init_swash(); Serial.printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp); } break; case 'r': case 'R': heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse()); break; case 't': case 'T': temp = read_num_from_serial(); if( temp > 1000 ) temp -= 1500; if( temp > -500 && temp < 500 ) { heli_get_servo(active_servo)->radio_trim = 1500 + temp; heli_init_swash(); Serial.printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp); } break; case 'z': case 'Z': heli_get_servo(active_servo)->radio_trim -= 10; break; } } // allow swash plate to move output_motors_armed(); delay(20); } // display final settings report_heli(); // save to eeprom g.heli_servo_1.save_eeprom(); g.heli_servo_2.save_eeprom(); g.heli_servo_3.save_eeprom(); g.heli_servo_4.save_eeprom(); g.heli_servo1_pos.save(); g.heli_servo2_pos.save(); g.heli_servo3_pos.save(); g.heli_roll_max.save(); g.heli_pitch_max.save(); g.heli_coll_min.save(); g.heli_coll_max.save(); g.heli_coll_mid.save(); // return swash plate movements to attitude controller heli_manual_override = false; return(0); } // setup for external tail gyro (for heli only) static int8_t setup_gyro(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { g.heli_ext_gyro_enabled.set_and_save(true); // optionally capture the gain if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) { g.heli_ext_gyro_gain = argv[2].i; g.heli_ext_gyro_gain.save(); } } else if (!strcmp_P(argv[1].str, PSTR("off"))) { g.heli_ext_gyro_enabled.set_and_save(false); // capture gain if user simply provides a number } else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) { g.heli_ext_gyro_enabled.set_and_save(true); g.heli_ext_gyro_gain = argv[1].i; g.heli_ext_gyro_gain.save(); }else{ Serial.printf_P(PSTR("\nOptions:[on, off] gain\n")); } report_gyro(); return 0; } #endif // FRAME_CONFIG == HELI static void clear_offsets() { Vector3f _offsets(0.0,0.0,0.0); compass.set_offsets(_offsets); compass.save_offsets(); } /*static int8_t setup_mag_offset(uint8_t argc, const Menu::arg *argv) { Vector3f _offsets; if (!strcmp_P(argv[1].str, PSTR("c"))) { clear_offsets(); report_compass(); return (0); } print_hit_enter(); init_compass(); int _min[3] = {0,0,0}; int _max[3] = {0,0,0}; compass.read(); compass.calculate(0,0); // roll = 0, pitch = 0 while(1){ delay(50); compass.read(); compass.calculate(0,0); // roll = 0, pitch = 0 if(compass.mag_x < _min[0]) _min[0] = compass.mag_x; if(compass.mag_y < _min[1]) _min[1] = compass.mag_y; if(compass.mag_z < _min[2]) _min[2] = compass.mag_z; // capture max if(compass.mag_x > _max[0]) _max[0] = compass.mag_x; if(compass.mag_y > _max[1]) _max[1] = compass.mag_y; if(compass.mag_z > _max[2]) _max[2] = compass.mag_z; // calculate offsets _offsets.x = (float)(_max[0] + _min[0]) / -2; _offsets.y = (float)(_max[1] + _min[1]) / -2; _offsets.z = (float)(_max[2] + _min[2]) / -2; // display all to user Serial.printf_P(PSTR("Heading: %u, \t (%d, %d, %d), (%4.4f, %4.4f, %4.4f)\n"), (uint16_t)(wrap_360(ToDeg(compass.heading) * 100)) /100, compass.mag_x, compass.mag_y, compass.mag_z, _offsets.x, _offsets.y, _offsets.z); if(Serial.available() > 1){ compass.set_offsets(_offsets); //compass.set_offsets(mag_offset_x, mag_offset_y, mag_offset_z); report_compass(); return 0; } } return 0; } */ #ifdef OPTFLOW_ENABLED static int8_t setup_optflow(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { g.optflow_enabled = true; init_optflow(); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { g.optflow_enabled = false; //} else if(argv[1].i > 10){ // g.optflow_fov.set_and_save(argv[1].i); // optflow.set_field_of_view(g.optflow_fov.get()); }else{ Serial.printf_P(PSTR("\nOptions:[on, off]\n")); report_optflow(); return 0; } g.optflow_enabled.save(); report_optflow(); return 0; } #endif /***************************************************************************/ // CLI reports /***************************************************************************/ static void report_batt_monitor() { Serial.printf_P(PSTR("\nBatt Mointor\n")); print_divider(); if(g.battery_monitoring == 0) print_enabled(false); if(g.battery_monitoring == 1) Serial.printf_P(PSTR("3 cells")); if(g.battery_monitoring == 2) Serial.printf_P(PSTR("4 cells")); if(g.battery_monitoring == 3) Serial.printf_P(PSTR("batt volts")); if(g.battery_monitoring == 4) Serial.printf_P(PSTR("volts and cur")); print_blanks(2); } static void report_wp(byte index = 255) { if(index == 255){ for(byte i = 0; i <= g.waypoint_total; i++){ struct Location temp = get_command_with_index(i); print_wp(&temp, i); } }else{ struct Location temp = get_command_with_index(index); print_wp(&temp, index); } } static void report_sonar() { g.sonar_enabled.load(); Serial.printf_P(PSTR("Sonar\n")); print_divider(); print_enabled(g.sonar_enabled.get()); print_blanks(2); } static void report_frame() { Serial.printf_P(PSTR("Frame\n")); print_divider(); #if FRAME_CONFIG == QUAD_FRAME Serial.printf_P(PSTR("Quad frame\n")); #elif FRAME_CONFIG == TRI_FRAME Serial.printf_P(PSTR("TRI frame\n")); #elif FRAME_CONFIG == HEXA_FRAME Serial.printf_P(PSTR("Hexa frame\n")); #elif FRAME_CONFIG == Y6_FRAME Serial.printf_P(PSTR("Y6 frame\n")); #elif FRAME_CONFIG == OCTA_FRAME Serial.printf_P(PSTR("Octa frame\n")); #elif FRAME_CONFIG == HELI_FRAME Serial.printf_P(PSTR("Heli frame\n")); #endif #if FRAME_CONFIG != HELI_FRAME if(g.frame_orientation == X_FRAME) Serial.printf_P(PSTR("X mode\n")); else if(g.frame_orientation == PLUS_FRAME) Serial.printf_P(PSTR("+ mode\n")); else if(g.frame_orientation == V_FRAME) Serial.printf_P(PSTR("V mode\n")); #endif print_blanks(2); } static void report_radio() { Serial.printf_P(PSTR("Radio\n")); print_divider(); // radio print_radio_values(); print_blanks(2); } static void report_imu() { Serial.printf_P(PSTR("IMU\n")); print_divider(); print_gyro_offsets(); print_accel_offsets(); print_blanks(2); } static void report_compass() { Serial.printf_P(PSTR("Compass\n")); print_divider(); print_enabled(g.compass_enabled); // mag declination Serial.printf_P(PSTR("Mag Dec: %4.4f\n"), degrees(compass.get_declination())); Vector3f offsets = compass.get_offsets(); // mag offsets Serial.printf_P(PSTR("Mag offsets: %4.4f, %4.4f, %4.4f"), offsets.x, offsets.y, offsets.z); print_blanks(2); } static void report_flight_modes() { Serial.printf_P(PSTR("Flight modes\n")); print_divider(); for(int i = 0; i < 6; i++ ){ print_switch(i, flight_modes[i]); } print_blanks(2); } #ifdef OPTFLOW_ENABLED void report_optflow() { Serial.printf_P(PSTR("OptFlow\n")); print_divider(); print_enabled(g.optflow_enabled); // field of view //Serial.printf_P(PSTR("FOV: %4.0f\n"), // degrees(g.optflow_fov)); print_blanks(2); } #endif #if FRAME_CONFIG == HELI_FRAME static void report_heli() { Serial.printf_P(PSTR("Heli\n")); print_divider(); // main servo settings Serial.printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n")); Serial.printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)g.heli_servo1_pos, (int)g.heli_servo_1.radio_min, (int)g.heli_servo_1.radio_max, (int)g.heli_servo_1.get_reverse()); Serial.printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)g.heli_servo2_pos, (int)g.heli_servo_2.radio_min, (int)g.heli_servo_2.radio_max, (int)g.heli_servo_2.get_reverse()); Serial.printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)g.heli_servo3_pos, (int)g.heli_servo_3.radio_min, (int)g.heli_servo_3.radio_max, (int)g.heli_servo_3.get_reverse()); Serial.printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)g.heli_servo_4.radio_min, (int)g.heli_servo_4.radio_max, (int)g.heli_servo_4.get_reverse()); Serial.printf_P(PSTR("roll max: \t%d\n"), (int)g.heli_roll_max); Serial.printf_P(PSTR("pitch max: \t%d\n"), (int)g.heli_pitch_max); Serial.printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)g.heli_coll_min, (int)g.heli_coll_mid, (int)g.heli_coll_max); print_blanks(2); } static void report_gyro() { Serial.printf_P(PSTR("External Gyro:\n")); print_divider(); print_enabled( g.heli_ext_gyro_enabled ); if( g.heli_ext_gyro_enabled ) Serial.printf_P(PSTR("gain: %d"),(int)g.heli_ext_gyro_gain); print_blanks(2); } #endif // FRAME_CONFIG == HELI_FRAME /***************************************************************************/ // CLI utilities /***************************************************************************/ /*static void print_PID(PI * pid) { Serial.printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"), pid->kP(), pid->kI(), (long)pid->imax()); } */ static void print_radio_values() { Serial.printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max); Serial.printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max); Serial.printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max); Serial.printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max); Serial.printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max); Serial.printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max); Serial.printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max); //Serial.printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max); } static void print_switch(byte p, byte m) { Serial.printf_P(PSTR("Pos %d: "),p); Serial.println(flight_mode_strings[m]); } static void print_done() { Serial.printf_P(PSTR("\nSaved Settings\n\n")); } // read at 50Hz static bool radio_input_switch(void) { static int8_t bouncer = 0; if (int16_t(g.rc_1.radio_in - g.rc_1.radio_trim) > 100) { bouncer = 10; } if (int16_t(g.rc_1.radio_in - g.rc_1.radio_trim) < -100) { bouncer = -10; } if (bouncer >0) { bouncer --; } if (bouncer <0) { bouncer ++; } if (bouncer == 1 || bouncer == -1) { return bouncer; }else{ return 0; } } static void zero_eeprom(void) { byte b = 0; Serial.printf_P(PSTR("\nErasing EEPROM\n")); for (int i = 0; i < EEPROM_MAX_ADDR; i++) { eeprom_write_byte((uint8_t *) i, b); } Serial.printf_P(PSTR("done\n")); } static void print_accel_offsets(void) { Serial.printf_P(PSTR("Accel offsets: %4.2f, %4.2f, %4.2f\n"), (float)imu.ax(), (float)imu.ay(), (float)imu.az()); } static void print_gyro_offsets(void) { Serial.printf_P(PSTR("Gyro offsets: %4.2f, %4.2f, %4.2f\n"), (float)imu.gx(), (float)imu.gy(), (float)imu.gz()); } #if FRAME_CONFIG == HELI_FRAME static RC_Channel * heli_get_servo(int servo_num){ if( servo_num == CH_1 ) return &g.heli_servo_1; if( servo_num == CH_2 ) return &g.heli_servo_2; if( servo_num == CH_3 ) return &g.heli_servo_3; if( servo_num == CH_4 ) return &g.heli_servo_4; return NULL; } // Used to read integer values from the serial port static int read_num_from_serial() { byte index = 0; byte timeout = 0; char data[5] = ""; do { if (Serial.available() == 0) { delay(10); timeout++; }else{ data[index] = Serial.read(); timeout = 0; index++; } }while (timeout < 5 && index < 5); return atoi(data); } #endif #endif // CLI_ENABLED static void print_blanks(int num) { while(num > 0){ num--; Serial.println(""); } } static void print_divider(void) { for (int i = 0; i < 40; i++) { Serial.print("-"); } Serial.println(""); } static void print_enabled(boolean b) { if(b) Serial.printf_P(PSTR("en")); else Serial.printf_P(PSTR("dis")); Serial.printf_P(PSTR("abled\n")); } static void init_esc() { g.esc_calibrate.set_and_save(0); while(1){ read_radio(); delay(100); dancing_light(); APM_RC.OutputCh(CH_1, g.rc_3.radio_in); APM_RC.OutputCh(CH_2, g.rc_3.radio_in); APM_RC.OutputCh(CH_3, g.rc_3.radio_in); APM_RC.OutputCh(CH_4, g.rc_3.radio_in); APM_RC.OutputCh(CH_7, g.rc_3.radio_in); APM_RC.OutputCh(CH_8, g.rc_3.radio_in); #if FRAME_CONFIG == OCTA_FRAME APM_RC.OutputCh(CH_10, g.rc_3.radio_in); APM_RC.OutputCh(CH_11, g.rc_3.radio_in); #endif } } static void print_wp(struct Location *cmd, byte index) { Serial.printf_P(PSTR("command #: %d id:%d op:%d p1:%d p2:%ld p3:%ld p4:%ld \n"), (int)index, (int)cmd->id, (int)cmd->options, (int)cmd->p1, cmd->alt, cmd->lat, cmd->lng); } static void report_gps() { Serial.printf_P(PSTR("\nGPS\n")); print_divider(); print_enabled(GPS_enabled); print_blanks(2); } static void report_version() { Serial.printf_P(PSTR("FW Version %d\n"),(int)g.format_version.get()); print_divider(); print_blanks(2); }