#include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "RCInput.h" #include #include #include #include #include #include using namespace PX4; extern const AP_HAL::HAL& hal; void PX4RCInput::init() { _perf_rcin = perf_alloc(PC_ELAPSED, "APM_rcin"); _rc_sub = orb_subscribe(ORB_ID(input_rc)); if (_rc_sub == -1) { AP_HAL::panic("Unable to subscribe to input_rc"); } clear_overrides(); pthread_mutex_init(&rcin_mutex, nullptr); #if HAL_RCINPUT_WITH_AP_RADIO radio = AP_Radio::instance(); if (radio) { radio->init(); } #endif } bool PX4RCInput::new_input() { pthread_mutex_lock(&rcin_mutex); bool valid = _rcin.timestamp_last_signal != _last_read; if (_rcin.rc_failsafe) { // don't consider input valid if we are in RC failsafe. valid = false; } if (_override_valid) { // if we have RC overrides active, then always consider it valid valid = true; } _last_read = _rcin.timestamp_last_signal; _override_valid = false; pthread_mutex_unlock(&rcin_mutex); if (_rcin.input_source != last_input_source) { gcs().send_text(MAV_SEVERITY_DEBUG, "RCInput: decoding %s", input_source_name(_rcin.input_source)); last_input_source = _rcin.input_source; } return valid; } uint8_t PX4RCInput::num_channels() { pthread_mutex_lock(&rcin_mutex); uint8_t n = _rcin.channel_count; pthread_mutex_unlock(&rcin_mutex); return n; } uint16_t PX4RCInput::read(uint8_t ch) { if (ch >= RC_INPUT_MAX_CHANNELS) { return 0; } pthread_mutex_lock(&rcin_mutex); if (_override[ch]) { uint16_t v = _override[ch]; pthread_mutex_unlock(&rcin_mutex); return v; } if (ch >= _rcin.channel_count) { pthread_mutex_unlock(&rcin_mutex); return 0; } uint16_t v = _rcin.values[ch]; pthread_mutex_unlock(&rcin_mutex); #ifdef HAL_RCINPUT_WITH_AP_RADIO if (radio && ch == 0) { // hook to allow for update of radio on main thread, for mavlink sends radio->update(); } #endif return v; } uint8_t PX4RCInput::read(uint16_t* periods, uint8_t len) { if (len > RC_INPUT_MAX_CHANNELS) { len = RC_INPUT_MAX_CHANNELS; } for (uint8_t i = 0; i < len; i++){ periods[i] = read(i); } return len; } bool PX4RCInput::set_overrides(int16_t *overrides, uint8_t len) { bool res = false; for (uint8_t i = 0; i < len; i++) { res |= set_override(i, overrides[i]); } return res; } bool PX4RCInput::set_override(uint8_t channel, int16_t override) { if (override < 0) { return false; /* -1: no change. */ } if (channel >= RC_INPUT_MAX_CHANNELS) { return false; } _override[channel] = override; if (override != 0) { _override_valid = true; return true; } return false; } void PX4RCInput::clear_overrides() { for (uint8_t i = 0; i < RC_INPUT_MAX_CHANNELS; i++) { set_override(i, 0); } } const char *PX4RCInput::input_source_name(uint8_t id) const { switch(id) { case input_rc_s::RC_INPUT_SOURCE_UNKNOWN: return "UNKNOWN"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_PPM: return "PX4FMU_PPM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_PPM: return "PX4IO_PPM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SPEKTRUM: return "PX4IO_SPEKTRUM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SBUS: return "PX4IO_SBUS"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_ST24: return "PX4IO_ST24"; case input_rc_s::RC_INPUT_SOURCE_MAVLINK: return "MAVLINK"; case input_rc_s::RC_INPUT_SOURCE_QURT: return "QURT"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SPEKTRUM: return "PX4FMU_SPEKTRUM"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SBUS: return "PX4FMU_SBUS"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_ST24: return "PX4FMU_ST24"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SUMD: return "PX4FMU_SUMD"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_DSM: return "PX4FMU_DSM"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SUMD: return "PX4IO_SUMD"; case input_rc_s::RC_INPUT_SOURCE_PX4FMU_SRXL: return "PX4FMU_SRXL"; case input_rc_s::RC_INPUT_SOURCE_PX4IO_SRXL: return "PX4IO_SRXL"; default: return "ERROR"; } } void PX4RCInput::_timer_tick(void) { perf_begin(_perf_rcin); bool rc_updated = false; if (orb_check(_rc_sub, &rc_updated) == 0 && rc_updated) { pthread_mutex_lock(&rcin_mutex); orb_copy(ORB_ID(input_rc), _rc_sub, &_rcin); if (_rcin.rssi != 0 || _rssi != -1) { // always zero means not supported _rssi = _rcin.rssi; } pthread_mutex_unlock(&rcin_mutex); } #if HAL_RCINPUT_WITH_AP_RADIO if (radio && radio->last_recv_us() != last_radio_us) { last_radio_us = radio->last_recv_us(); pthread_mutex_lock(&rcin_mutex); _rcin.timestamp_last_signal = last_radio_us; _rcin.channel_count = radio->num_channels(); for (uint8_t i=0; i<_rcin.channel_count; i++) { _rcin.values[i] = radio->read(i); } pthread_mutex_unlock(&rcin_mutex); } #endif // note, we rely on the vehicle code checking new_input() // and a timeout for the last valid input to handle failsafe perf_end(_perf_rcin); } bool PX4RCInput::rc_bind(int dsmMode) { int fd = open("/dev/px4io", 0); if (fd == -1) { fd = open("/dev/px4fmu", 0); } if (fd == -1) { hal.console->printf("RCInput: failed to open /dev/px4io or /dev/px4fmu\n"); return false; } #if HAL_RCINPUT_WITH_AP_RADIO if (radio) { radio->start_recv_bind(); } #endif uint32_t mode = (dsmMode == 0) ? DSM2_BIND_PULSES : ((dsmMode == 1) ? DSMX_BIND_PULSES : DSMX8_BIND_PULSES); int ret = ioctl(fd, DSM_BIND_START, mode); close(fd); if (ret != 0) { hal.console->printf("RCInput: Unable to start DSM bind\n"); return false; } return true; } #endif