/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -- Coded by Victor Mayoral Vilches -- the code reuses partially the Sparkfun library from https://github.com/sparkfun/LSM9DS0_Breakout/tree/master/Libraries/Arduino/SFE_LSM9DS0 */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "AP_InertialSensor_LSM9DS0.h" #include "../AP_HAL_Linux/GPIO.h" extern const AP_HAL::HAL& hal; //////////////////////////// // LSM9DS0 Gyro Registers // //////////////////////////// #define WHO_AM_I_G 0x0F #define CTRL_REG1_G 0x20 #define CTRL_REG2_G 0x21 #define CTRL_REG3_G 0x22 #define CTRL_REG4_G 0x23 #define CTRL_REG5_G 0x24 #define REFERENCE_G 0x25 #define STATUS_REG_G 0x27 #define OUT_X_L_G 0x28 #define OUT_X_H_G 0x29 #define OUT_Y_L_G 0x2A #define OUT_Y_H_G 0x2B #define OUT_Z_L_G 0x2C #define OUT_Z_H_G 0x2D #define FIFO_CTRL_REG_G 0x2E #define FIFO_SRC_REG_G 0x2F #define INT1_CFG_G 0x30 #define INT1_SRC_G 0x31 #define INT1_THS_XH_G 0x32 #define INT1_THS_XL_G 0x33 #define INT1_THS_YH_G 0x34 #define INT1_THS_YL_G 0x35 #define INT1_THS_ZH_G 0x36 #define INT1_THS_ZL_G 0x37 #define INT1_DURATION_G 0x38 ////////////////////////////////////////// // LSM9DS0 Accel/Magneto (XM) Registers // ////////////////////////////////////////// #define OUT_TEMP_L_XM 0x05 #define OUT_TEMP_H_XM 0x06 #define STATUS_REG_M 0x07 #define OUT_X_L_M 0x08 #define OUT_X_H_M 0x09 #define OUT_Y_L_M 0x0A #define OUT_Y_H_M 0x0B #define OUT_Z_L_M 0x0C #define OUT_Z_H_M 0x0D #define WHO_AM_I_XM 0x0F #define INT_CTRL_REG_M 0x12 #define INT_SRC_REG_M 0x13 #define INT_THS_L_M 0x14 #define INT_THS_H_M 0x15 #define OFFSET_X_L_M 0x16 #define OFFSET_X_H_M 0x17 #define OFFSET_Y_L_M 0x18 #define OFFSET_Y_H_M 0x19 #define OFFSET_Z_L_M 0x1A #define OFFSET_Z_H_M 0x1B #define REFERENCE_X 0x1C #define REFERENCE_Y 0x1D #define REFERENCE_Z 0x1E #define CTRL_REG0_XM 0x1F #define CTRL_REG1_XM 0x20 #define CTRL_REG2_XM 0x21 #define CTRL_REG3_XM 0x22 #define CTRL_REG4_XM 0x23 #define CTRL_REG5_XM 0x24 #define CTRL_REG6_XM 0x25 #define CTRL_REG7_XM 0x26 #define STATUS_REG_A 0x27 #define OUT_X_L_A 0x28 #define OUT_X_H_A 0x29 #define OUT_Y_L_A 0x2A #define OUT_Y_H_A 0x2B #define OUT_Z_L_A 0x2C #define OUT_Z_H_A 0x2D #define FIFO_CTRL_REG 0x2E #define FIFO_SRC_REG 0x2F #define INT_GEN_1_REG 0x30 #define INT_GEN_1_SRC 0x31 #define INT_GEN_1_THS 0x32 #define INT_GEN_1_DURATION 0x33 #define INT_GEN_2_REG 0x34 #define INT_GEN_2_SRC 0x35 #define INT_GEN_2_THS 0x36 #define INT_GEN_2_DURATION 0x37 #define CLICK_CFG 0x38 #define CLICK_SRC 0x39 #define CLICK_THS 0x3A #define TIME_LIMIT 0x3B #define TIME_LATENCY 0x3C #define TIME_WINDOW 0x3D #define ACT_THS 0x3E #define ACT_DUR 0x3F AP_InertialSensor_LSM9DS0::AP_InertialSensor_LSM9DS0(): AP_InertialSensor(), _drdy_pin_a(NULL), _drdy_pin_m(NULL), _drdy_pin_g(NULL), _initialised(false), _lsm9ds0_product_id(AP_PRODUCT_ID_NONE) { } uint16_t AP_InertialSensor_LSM9DS0::_init_sensor( Sample_rate sample_rate) { if (_initialised) return _lsm9ds0_product_id; _initialised = true; _spi = hal.spi->device(AP_HAL::SPIDevice_LSM9DS0_AM); _spi_sem = _spi->get_semaphore(); _drdy_pin_a = hal.gpio->channel(BBB_P8_8); _drdy_pin_m = hal.gpio->channel(BBB_P8_10); _drdy_pin_g = hal.gpio->channel(BBB_P8_34); // For some reason configuring the pins as an inputs make the driver fail // _drdy_pin_a->mode(GPIO_IN); // _drdy_pin_m->mode(GPIO_IN); // _drdy_pin_g->mode(GPIO_IN); hal.scheduler->suspend_timer_procs(); uint8_t tries = 0; do { bool success = _hardware_init(sample_rate); if (success) { hal.scheduler->delay(5+2); if (!_spi_sem->take(100)) { hal.scheduler->panic(PSTR("LSM9DS0: Unable to get semaphore")); } if (_data_ready()) { _spi_sem->give(); break; } else { hal.console->println_P( PSTR("LSM9DS0 startup failed: no data ready")); } _spi_sem->give(); } if (tries++ > 5) { hal.scheduler->panic(PSTR("PANIC: failed to boot LSM9DS0 5 times")); } } while (1); hal.scheduler->resume_timer_procs(); /* read the first lot of data. * _read_data_transaction requires the spi semaphore to be taken by * its caller. */ _last_sample_time_micros = hal.scheduler->micros(); hal.scheduler->delay(10); if (_spi_sem->take(100)) { _read_data_transaction_g(); _read_data_transaction_xm(); _spi_sem->give(); } // start the timer process to read samples hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_LSM9DS0::_poll_data)); #if LSM9DS0_DEBUG _dump_registers(); #endif return _lsm9ds0_product_id; } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_LSM9DS0::wait_for_sample(uint16_t timeout_ms) { if (_sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { hal.scheduler->delay_microseconds(100); if (_sample_available()) { return true; } } return false; } // TODO finish bool AP_InertialSensor_LSM9DS0::update( void ) { // wait for at least 1 sample if (!wait_for_sample(1000)) { return false; } _previous_accel[0] = _accel[0]; // disable timer procs for mininum time hal.scheduler->suspend_timer_procs(); _gyro[0] = Vector3f(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z); _accel[0] = Vector3f(_accel_sum.x, _accel_sum.y, _accel_sum.z); // _mag[0] = Vector3f(_mag_sum.x, _mag_sum.y, _mag_sum.z); // TODO divide num_samples _num_samples_g = _sum_count_g; _num_samples_xm = _sum_count_xm; _accel_sum.zero(); _gyro_sum.zero(); _sum_count_g = 0; _sum_count_xm = 0; hal.scheduler->resume_timer_procs(); _gyro[0].rotate(_board_orientation); _gyro[0] *= _gRes / _num_samples_g; _gyro[0] -= _gyro_offset[0]; _accel[0].rotate(_board_orientation); _accel[0] *= _aRes / _num_samples_xm; Vector3f accel_scaling = _accel_scale[0].get(); _accel[0].x *= accel_scaling.x; _accel[0].y *= accel_scaling.y; _accel[0].z *= accel_scaling.z; _accel[0] -= _accel_offset[0]; // // Configure mag // _mag[0] *= _mRes / _num_samples_xm; // if (_last_filter_hz != _mpu6000_filter) { // if (_spi_sem->take(10)) { // _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); // _set_filter_register(_mpu6000_filter, 0); // _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); // _error_count = 0; // _spi_sem->give(); // } // } return true; } // return the LSM9DS0 gyro drift rate in radian/s/s // TODO to be reviewed. Not sure about this value float AP_InertialSensor_LSM9DS0::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } // get_delta_time returns the time period in seconds overwhich the sensor data was collected float AP_InertialSensor_LSM9DS0::get_delta_time() const { // the sensor runs at 200Hz return (1./700) * _num_samples_g; } /*================ HARDWARE FUNCTIONS ==================== */ // TODO finish the method bool AP_InertialSensor_LSM9DS0::_hardware_init(Sample_rate sample_rate) { // Store the resolutions in private variables _calcgRes(G_SCALE_245DPS); // Calculate DPS / ADC tick, stored in gRes variable _calcmRes(M_SCALE_2GS); // Calculate Gs / ADC tick, stored in mRes variable _calcaRes(A_SCALE_2G); // Calculate g / ADC tick, stored in aRes variable if (!_spi_sem->take(100)) { hal.scheduler->panic(PSTR("LSM9DS0: Unable to get semaphore")); } // initially run the bus at low speed (500kHz on APM2) _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); // Init the sensors _initGyro(); _initAccel(); _initMag(); uint8_t default_filter; // sample rate and filtering // to minimise the effects of aliasing we choose a filter // that is less than half of the sample rate switch (sample_rate) { case RATE_50HZ: // this is used for plane and rover, where noise resistance is // more important than update rate. Tests on an aerobatic plane // show that 10Hz is fine, and makes it very noise resistant // default_filter = BITS_DLPF_CFG_10HZ; _sample_shift = 2; break; case RATE_100HZ: // default_filter = BITS_DLPF_CFG_20HZ; _sample_shift = 1; break; case RATE_200HZ: default: // default_filter = BITS_DLPF_CFG_20HZ; _sample_shift = 0; break; } // _set_filter_register(_mpu6000_filter, default_filter); // To verify communication, we can read from the WHO_AM_I register of // each device. uint8_t gTest = _register_read_g(WHO_AM_I_G); // Read the gyro WHO_AM_I uint8_t xmTest = _register_read_xm(WHO_AM_I_XM); // Read the accel/mag WHO_AM_I // TODO check the content of these variables. // now that we have initialised, we set the SPI bus speed to high // (8MHz on APM2) _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _spi_sem->give(); return true; } /** * Return true if the LSM9DS0 has new data available for reading. * * We use the data ready pin if it is available. * Returns 1 if LSM9DS0 gyro is available, 2 if either the mag or the accel is available and * 3 if both are. * * TODO, read the * status register. */ uint8_t AP_InertialSensor_LSM9DS0::_data_ready() { uint8_t rvalue = 0; if (_drdy_pin_g) { if (_drdy_pin_g->read() != 0){ rvalue=1; } if (_drdy_pin_a) { if (_drdy_pin_a->read() != 0){ rvalue = 3; } } } else if (_drdy_pin_a) { if (_drdy_pin_a->read() != 0){ rvalue = 2; } } return rvalue; // TODO Implement a read on the status register // uint8_t status = _register_read(MPUREG_INT_STATUS); // return (status & BIT_RAW_RDY_INT) != 0; } /** * Timer process to poll for new data from the LSM9DS0. */ void AP_InertialSensor_LSM9DS0::_poll_data(void) { if (hal.scheduler->in_timerprocess()) { if (!_spi_sem->take_nonblocking()) { /* the semaphore being busy is an expected condition when the mainline code is calling wait_for_sample() which will grab the semaphore. We return now and rely on the mainline code grabbing the latest sample. */ return; } if (_data_ready() == 1) { _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction_g(); } else if (_data_ready() == 2){ _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction_xm(); } else if (_data_ready() == 3){ _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction_g(); _read_data_transaction_xm(); } _spi_sem->give(); } else { /* Synchronous read - take semaphore */ if (_spi_sem->take(10)) { if (_data_ready() == 1) { _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction_g(); } else if (_data_ready() == 2){ _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction_xm(); } else if (_data_ready() == 3){ _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction_g(); _read_data_transaction_xm(); } _spi_sem->give(); } else { hal.scheduler->panic( PSTR("PANIC: AP_InertialSensor_LSM9DS0::_poll_data " "failed to take SPI semaphore synchronously")); } } } // TODO use error_count to notifify if a transaction has gone wrong void AP_InertialSensor_LSM9DS0::_read_data_transaction_g() { // read gyro values uint8_t temp[6]; // We'll read six bytes from the gyro into temp for (uint8_t i=0;i<6;i++){ temp[i] = _register_read_g(OUT_X_L_G + i); } uint16_t gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx uint16_t gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy uint16_t gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz _gyro_sum.x += gx; _gyro_sum.y += gy; _gyro_sum.z -= gz; _sum_count_g++; if (_sum_count_g == 0) { _gyro_sum.zero(); } } // TODO use error_count to notifify if a transaction has gone wrong void AP_InertialSensor_LSM9DS0::_read_data_transaction_xm() { uint8_t temp[6]; // We'll read six bytes from the accel into temp // read accel values for (uint8_t i=0;i<6;i++){ temp[i] = _register_read_xm(OUT_X_L_A + i); } uint16_t ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax uint16_t ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay uint16_t az = (temp[5] << 8) | temp[4]; // Store z-axis values into az _accel_sum.x += ax; _accel_sum.y += ay; _accel_sum.z -= az; // read mag values for (uint8_t i=0;i<6;i++){ temp[i] = _register_read_xm(OUT_X_L_M + i); } uint16_t mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx uint16_t my = (temp[3] << 8) | temp[2]; // Store y-axis values into my uint16_t mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz _mag_sum.x += mx; _mag_sum.y += my; _mag_sum.z -= mz; _sum_count_xm++; if (_sum_count_xm == 0) { _gyro_sum.zero(); _mag_sum.zero(); } } /*================ PRIVATE INTERFACE ==================== */ // void AP_InertialSensor_LSM9DS0::_set_filter_register(uint8_t filter_hz, uint8_t default_filter) // { // uint8_t filter = default_filter; // // choose filtering frequency // switch (filter_hz) { // case 5: // filter = BITS_DLPF_CFG_5HZ; // break; // case 10: // filter = BITS_DLPF_CFG_10HZ; // break; // case 20: // filter = BITS_DLPF_CFG_20HZ; // break; // case 42: // filter = BITS_DLPF_CFG_42HZ; // break; // case 98: // filter = BITS_DLPF_CFG_98HZ; // break; // } // if (filter != 0) { // _last_filter_hz = filter_hz; // _register_write(MPUREG_CONFIG, filter); // } // } // return true if a sample is available bool AP_InertialSensor_LSM9DS0::_sample_available() { _poll_data(); return (_sum_count_g >> _sample_shift || _sum_count_xm >> _sample_shift) > 0; } uint8_t AP_InertialSensor_LSM9DS0::_register_read_xm( uint8_t reg ) { uint8_t addr = reg | 0x80; // Set most significant bit uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _spi->transaction(tx, rx, 2); return rx[1]; } uint8_t AP_InertialSensor_LSM9DS0::_register_read_g( uint8_t reg ) { uint8_t addr = reg | 0x80; // Set most significant bit uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _spi->transaction(tx, rx, 2); return rx[1]; } void AP_InertialSensor_LSM9DS0::_register_write_xm(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _spi->transaction(tx, rx, 2); } void AP_InertialSensor_LSM9DS0::_register_write_g(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _spi->transaction(tx, rx, 2); } void AP_InertialSensor_LSM9DS0::_initGyro() { /* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen DR[1:0] - Output data rate selection 00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz BW[1:0] - Bandwidth selection (sets cutoff frequency) Value depends on ODR. See datasheet table 21. PD - Power down enable (0=power down mode, 1=normal or sleep mode) Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */ _register_write_g(CTRL_REG1_G, 0x0F); // Normal mode, enable all axes hal.scheduler->delay(1); /* CTRL_REG2_G sets up the HPF Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0 HPM[1:0] - High pass filter mode selection 00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering, 10=normal, 11=autoreset on interrupt HPCF[3:0] - High pass filter cutoff frequency Value depends on data rate. See datasheet table 26. */ _register_write_g(CTRL_REG2_G, 0x00); // Normal mode, high cutoff frequency hal.scheduler->delay(1); /* CTRL_REG3_G sets up interrupt and DRDY_G pins Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable) I1_BOOT - Boot status available on INT_G (0=disable, 1=enable) H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low) PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain) I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable) I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable) I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable) I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */ // Int1 enabled (pp, active low), data read on DRDY_G: _register_write_g(CTRL_REG3_G, 0x88); hal.scheduler->delay(1); /* CTRL_REG4_G sets the scale, update mode Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM BDU - Block data update (0=continuous, 1=output not updated until read BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add) FS[1:0] - Full-scale selection 00=245dps, 01=500dps, 10=2000dps, 11=2000dps ST[1:0] - Self-test enable 00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+) SIM - SPI serial interface mode select 0=4 wire, 1=3 wire */ _register_write_g(CTRL_REG4_G, 0x00); // Set scale to 245 dps hal.scheduler->delay(1); /* CTRL_REG5_G sets up the FIFO, HPF, and INT1 Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0 BOOT - Reboot memory content (0=normal, 1=reboot) FIFO_EN - FIFO enable (0=disable, 1=enable) HPen - HPF enable (0=disable, 1=enable) INT1_Sel[1:0] - Int 1 selection configuration Out_Sel[1:0] - Out selection configuration */ _register_write_g(CTRL_REG5_G, 0x00); hal.scheduler->delay(1); } void AP_InertialSensor_LSM9DS0::_initAccel() { /* CTRL_REG0_XM (0x1F) (Default value: 0x00) Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2 BOOT - Reboot memory content (0: normal, 1: reboot) FIFO_EN - Fifo enable (0: disable, 1: enable) WTM_EN - FIFO watermark enable (0: disable, 1: enable) HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled) HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled) HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled) */ _register_write_xm(CTRL_REG0_XM, 0x00); hal.scheduler->delay(1); /* CTRL_REG1_XM (0x20) (Default value: 0x07) Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN AODR[3:0] - select the acceleration data rate: 0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz, 0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz, 1001=800Hz, 1010=1600Hz, (remaining combinations undefined). BDU - block data update for accel AND mag 0: Continuous update 1: Output registers aren't updated until MSB and LSB have been read. AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled. 0: Axis disabled, 1: Axis enabled */ _register_write_xm(CTRL_REG1_XM, 0x57); // 100Hz data rate, x/y/z all enabled hal.scheduler->delay(1); //Serial.println(xmReadByte(CTRL_REG1_XM)); /* CTRL_REG2_XM (0x21) (Default value: 0x00) Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM ABW[1:0] - Accelerometer anti-alias filter bandwidth 00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz AFS[2:0] - Accel full-scale selection 000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g AST[1:0] - Accel self-test enable 00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed SIM - SPI mode selection 0=4-wire, 1=3-wire */ _register_write_xm(CTRL_REG2_XM, 0x00); // Set scale to 2g hal.scheduler->delay(1); /* CTRL_REG3_XM is used to set interrupt generators on INT1_XM Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY */ // Accelerometer data ready on INT1_XM (0x04) _register_write_xm(CTRL_REG3_XM, 0x04); hal.scheduler->delay(1); } void AP_InertialSensor_LSM9DS0::_initMag() { /* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1 TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled) M_RES[1:0] - Magnetometer resolution select (0=low, 3=high) M_ODR[2:0] - Magnetometer data rate select 000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC) 0=interrupt request not latched, 1=interrupt request latched LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC) 0=irq not latched, 1=irq latched */ _register_write_xm(CTRL_REG5_XM, 0x14); // Mag data rate - 100 Hz hal.scheduler->delay(1); /* CTRL_REG6_XM sets the magnetometer full-scale Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0 MFS[1:0] - Magnetic full-scale selection 00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs */ _register_write_xm(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS hal.scheduler->delay(1); /* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0 AHPM[1:0] - HPF mode selection 00=normal (resets reference registers), 01=reference signal for filtering, 10=normal, 11=autoreset on interrupt event AFDS - Filtered acceleration data selection 0=internal filter bypassed, 1=data from internal filter sent to FIFO MLP - Magnetic data low-power mode 0=data rate is set by M_ODR bits in CTRL_REG5 1=data rate is set to 3.125Hz MD[1:0] - Magnetic sensor mode selection (default 10) 00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */ _register_write_xm(CTRL_REG7_XM, 0x00); // Continuous conversion mode hal.scheduler->delay(1); /* CTRL_REG4_XM is used to set interrupt generators on INT2_XM Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM */ _register_write_xm(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08) hal.scheduler->delay(1); /* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od) IEA - Interrupt polarity for accel and magneto 0=active-low, 1=active-high IEL - Latch interrupt request for accel and magneto 0=irq not latched, 1=irq latched 4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set MIEN - Enable interrupt generation for magnetic data 0=disable, 1=enable) */ _register_write_xm(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull hal.scheduler->delay(1); } void AP_InertialSensor_LSM9DS0::_calcgRes(gyro_scale_lsm9ds0 gScl) { // Possible gyro scales (and their register bit settings) are: // 245 DPS (00), 500 DPS (01), 2000 DPS (10). Here's a bit of an algorithm // to calculate DPS/(ADC tick) based on that 2-bit value: switch (gScl) { case G_SCALE_245DPS: _gRes = 245.0 / 32768.0; break; case G_SCALE_500DPS: _gRes = 500.0 / 32768.0; break; case G_SCALE_2000DPS: _gRes = 2000.0 / 32768.0; break; } } void AP_InertialSensor_LSM9DS0::_calcaRes(accel_scale aScl) { // Possible accelerometer scales (and their register bit settings) are: // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an // algorithm to calculate g/(ADC tick) based on that 3-bit value: _aRes = aScl == A_SCALE_16G ? 16.0 / 32768.0 : (((float) aScl + 1.0) * 2.0) / 32768.0; } void AP_InertialSensor_LSM9DS0::_calcmRes(mag_scale mScl) { // Possible magnetometer scales (and their register bit settings) are: // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). Here's a bit of an algorithm // to calculate Gs/(ADC tick) based on that 2-bit value: _mRes = mScl == M_SCALE_2GS ? 2.0 / 32768.0 : (float) (mScl << 2) / 32768.0; } // TODO check the registers, dump first the Gyro registers and then the Mag registers #if LSM9DS0_DEBUG // dump all config registers - used for debug void AP_InertialSensor_LSM9DS0::_dump_registers(void) { hal.console->println_P(PSTR("LSM9DS0 registers:")); hal.console->println_P(PSTR("Gyroscope registers:")); const uint8_t first = OUT_TEMP_L_XM; const uint8_t last = ACT_DUR; for (uint8_t reg=first; reg<=last; reg++) { uint8_t v = _register_read_g(reg); hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); if ((reg - (first-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); hal.console->println_P(PSTR("Accelerometer and Magnetometers registers:")); for (uint8_t reg=first; reg<=last; reg++) { uint8_t v = _register_read_xm(reg); hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); if ((reg - (first-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); } #endif #endif // CONFIG_HAL_BOARD