/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include "AP_InertialSensor.h" #include "AP_InertialSensor_Backend.h" AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) : _imu(imu), _product_id(AP_PRODUCT_ID_NONE) {} void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel) { /* accel calibration is always done in sensor frame with this version of the code. That means we apply the rotation after the offsets and scaling. */ // apply offsets accel -= _imu._accel_offset[instance]; // apply scaling const Vector3f &accel_scale = _imu._accel_scale[instance].get(); accel.x *= accel_scale.x; accel.y *= accel_scale.y; accel.z *= accel_scale.z; // rotate to body frame accel.rotate(_imu._board_orientation); } void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro) { // gyro calibration is always assumed to have been done in sensor frame gyro -= _imu._gyro_offset[instance]; gyro.rotate(_imu._board_orientation); } void AP_InertialSensor_Backend::_publish_delta_angle(uint8_t instance, const Vector3f &delta_angle) { // publish delta angle _imu._delta_angle[instance] = delta_angle; _imu._delta_angle_valid[instance] = true; } /* rotate gyro vector and add the gyro offset */ void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro) { _imu._gyro[instance] = gyro; _imu._gyro_healthy[instance] = true; } void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance, const Vector3f &gyro) { } /* rotate accel vector, scale and add the accel offset */ void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel) { _imu._accel[instance] = accel; _imu._accel_healthy[instance] = true; if (_imu._accel_sample_rates[instance] <= 0) { return; } // publish delta velocity _imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance]; _imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance]; _imu._delta_velocity_valid[instance] = true; } void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance, const Vector3f &accel) { float dt; if (_imu._accel_sample_rates[instance] <= 0) { return; } dt = 1.0f / _imu._accel_sample_rates[instance]; #if INS_VIBRATION_CHECK _imu.calc_vibration_and_clipping(instance, accel, dt); #endif // delta velocity _imu._delta_velocity_acc[instance] += accel * dt; _imu._delta_velocity_acc_dt[instance] += dt; } void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance, float max_offset) { _imu._accel_max_abs_offsets[instance] = max_offset; } void AP_InertialSensor_Backend::_set_accel_sample_rate(uint8_t instance, uint32_t rate) { _imu._accel_sample_rates[instance] = rate; } // set accelerometer error_count void AP_InertialSensor_Backend::_set_accel_error_count(uint8_t instance, uint32_t error_count) { _imu._accel_error_count[instance] = error_count; } // set gyro error_count void AP_InertialSensor_Backend::_set_gyro_error_count(uint8_t instance, uint32_t error_count) { _imu._gyro_error_count[instance] = error_count; } // return the requested sample rate in Hz uint16_t AP_InertialSensor_Backend::get_sample_rate_hz(void) const { // enum can be directly cast to Hz return (uint16_t)_imu._sample_rate; } /* publish a temperature value for an instance */ void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature) { _imu._temperature[instance] = temperature; }