/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * RC_Channel.cpp - class for one RC channel input */ #include #include #include extern const AP_HAL::HAL& hal; #include #include "RC_Channel.h" #include uint32_t RC_Channel::configured_mask; const AP_Param::GroupInfo RC_Channel::var_info[] = { // @Param: MIN // @DisplayName: RC min PWM // @Description: RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("MIN", 1, RC_Channel, radio_min, 1100), // @Param: TRIM // @DisplayName: RC trim PWM // @Description: RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("TRIM", 2, RC_Channel, radio_trim, 1500), // @Param: MAX // @DisplayName: RC max PWM // @Description: RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("MAX", 3, RC_Channel, radio_max, 1900), // @Param: REVERSED // @DisplayName: RC reversed // @Description: Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel. // @Values: 0:Normal,1:Reversed // @User: Advanced AP_GROUPINFO("REVERSED", 4, RC_Channel, reversed, 0), // @Param: DZ // @DisplayName: RC dead-zone // @Description: PWM dead zone in microseconds around trim or bottom // @Units: PWM // @Range: 0 200 // @User: Advanced AP_GROUPINFO("DZ", 5, RC_Channel, dead_zone, 0), // @Param: OPTION // @DisplayName: RC input option // @Description: Function assigned to this RC channel // @Values{Copter}: 0:Do Nothing, 2:Flip, 3:Simple Mode, 4:RTL, 5:Save Trim, 7:Save WP, 9:Camera Trigger, 10:RangeFinder, 11:Fence, 13:Super Simple Mode, 14:Acro Trainer, 15:Sprayer, 16:Auto, 17:AutoTune, 18:Land, 19:Gripper, 21:Parachute Enable, 22:Parachute Release, 23:Parachute 3pos, 24:Auto Mission Reset, 25:AttCon Feed Forward, 26:AttCon Accel Limits, 27:Retract Mount, 28:Relay On/Off, 34:Relay2 On/Off, 35:Relay3 On/Off, 36:Relay4 On/Off, 29:Landing Gear, 30:Lost Copter Sound, 31:Motor Emergency Stop, 32:Motor Interlock, 33:Brake, 37:Throw, 38:ADSB-Avoidance, 39:PrecLoiter, 40:Object Avoidance, 41:ArmDisarm, 42:SmartRTL, 43:InvertedFlight, 44:Winch Enable, 45:WinchControl, 46:RC Override Enable, 47:User Function 1, 48:User Function 2, 49:User Function 3 // @Values{Rover}: 0:Do Nothing, 4:RTL, 7:Save WP, 9:Camera Trigger, 16:Auto, 28:Relay On/Off, 34:Relay2 On/Off, 35:Relay3 On/Off, 36:Relay4 On/Off, 41:ArmDisarm, 42:SmartRTL, 50:LearnCruise, 51:Manual, 52:Acro, 53:Steering, 54:Hold, 55:Guided, 56:Loiter, 57:Follow // @User: Standard AP_GROUPINFO_FRAME("OPTION", 6, RC_Channel, option, 0, AP_PARAM_FRAME_COPTER|AP_PARAM_FRAME_ROVER), AP_GROUPEND }; // constructor RC_Channel::RC_Channel(void) { AP_Param::setup_object_defaults(this, var_info); } void RC_Channel::set_range(uint16_t high) { type_in = RC_CHANNEL_TYPE_RANGE; high_in = high; } void RC_Channel::set_angle(uint16_t angle) { type_in = RC_CHANNEL_TYPE_ANGLE; high_in = angle; } void RC_Channel::set_default_dead_zone(int16_t dzone) { dead_zone.set_default(abs(dzone)); } bool RC_Channel::get_reverse(void) const { return bool(reversed.get()); } // read input from hal.rcin or overrides bool RC_Channel::update(void) { if (has_override() && !(*RC_Channels::options & RC_IGNORE_OVERRIDES)) { radio_in = override_value; } else if (!(*RC_Channels::options & RC_IGNORE_RECEIVER)) { radio_in = hal.rcin->read(ch_in); } else { return false; } if (type_in == RC_CHANNEL_TYPE_RANGE) { control_in = pwm_to_range(); } else { //RC_CHANNEL_TYPE_ANGLE control_in = pwm_to_angle(); } return true; } // recompute control values with no deadzone // When done this way the control_in value can be used as servo_out // to give the same output as input void RC_Channel::recompute_pwm_no_deadzone() { if (type_in == RC_CHANNEL_TYPE_RANGE) { control_in = pwm_to_range_dz(0); } else { //RC_CHANNEL_ANGLE control_in = pwm_to_angle_dz(0); } } /* return the center stick position expressed as a control_in value used for thr_mid in copter */ int16_t RC_Channel::get_control_mid() const { if (type_in == RC_CHANNEL_TYPE_RANGE) { int16_t r_in = (radio_min.get() + radio_max.get())/2; if (reversed) { r_in = radio_max.get() - (r_in - radio_min.get()); } int16_t radio_trim_low = radio_min + dead_zone; return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low)); } else { return 0; } } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value using the specified dead_zone */ int16_t RC_Channel::pwm_to_angle_dz_trim(uint16_t _dead_zone, uint16_t _trim) { int16_t radio_trim_high = _trim + _dead_zone; int16_t radio_trim_low = _trim - _dead_zone; int16_t reverse_mul = (reversed?-1:1); if (radio_in > radio_trim_high && radio_max != radio_trim_high) { return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_high)) / (int32_t)(radio_max - radio_trim_high); } else if (radio_in < radio_trim_low && radio_trim_low != radio_min) { return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_low)) / (int32_t)(radio_trim_low - radio_min); } else { return 0; } } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value using the specified dead_zone */ int16_t RC_Channel::pwm_to_angle_dz(uint16_t _dead_zone) { return pwm_to_angle_dz_trim(_dead_zone, radio_trim); } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value */ int16_t RC_Channel::pwm_to_angle() { return pwm_to_angle_dz(dead_zone); } /* convert a pulse width modulation value to a value in the configured range, using the specified deadzone */ int16_t RC_Channel::pwm_to_range_dz(uint16_t _dead_zone) { int16_t r_in = constrain_int16(radio_in, radio_min.get(), radio_max.get()); if (reversed) { r_in = radio_max.get() - (r_in - radio_min.get()); } int16_t radio_trim_low = radio_min + _dead_zone; if (r_in > radio_trim_low) { return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low)); } return 0; } /* convert a pulse width modulation value to a value in the configured range */ int16_t RC_Channel::pwm_to_range() { return pwm_to_range_dz(dead_zone); } int16_t RC_Channel::get_control_in_zero_dz(void) { if (type_in == RC_CHANNEL_TYPE_RANGE) { return pwm_to_range_dz(0); } return pwm_to_angle_dz(0); } // ------------------------------------------ float RC_Channel::norm_input() { float ret; int16_t reverse_mul = (reversed?-1:1); if (radio_in < radio_trim) { if (radio_min >= radio_trim) { return 0.0f; } ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min); } else { if (radio_max <= radio_trim) { return 0.0f; } ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim); } return constrain_float(ret, -1.0f, 1.0f); } float RC_Channel::norm_input_dz() { int16_t dz_min = radio_trim - dead_zone; int16_t dz_max = radio_trim + dead_zone; float ret; int16_t reverse_mul = (reversed?-1:1); if (radio_in < dz_min && dz_min > radio_min) { ret = reverse_mul * (float)(radio_in - dz_min) / (float)(dz_min - radio_min); } else if (radio_in > dz_max && radio_max > dz_max) { ret = reverse_mul * (float)(radio_in - dz_max) / (float)(radio_max - dz_max); } else { ret = 0; } return constrain_float(ret, -1.0f, 1.0f); } /* get percentage input from 0 to 100. This ignores the trim value. */ uint8_t RC_Channel::percent_input() { if (radio_in <= radio_min) { return reversed?100:0; } if (radio_in >= radio_max) { return reversed?0:100; } uint8_t ret = 100.0f * (radio_in - radio_min) / (float)(radio_max - radio_min); if (reversed) { ret = 100 - ret; } return ret; } /* Return true if the channel is at trim and within the DZ */ bool RC_Channel::in_trim_dz() { return is_bounded_int32(radio_in, radio_trim - dead_zone, radio_trim + dead_zone); } void RC_Channel::set_override(const uint16_t v, const uint32_t timestamp_us) { last_override_time = timestamp_us != 0 ? timestamp_us : AP_HAL::millis(); override_value = v; } void RC_Channel::clear_override() { last_override_time = 0; override_value = 0; } bool RC_Channel::has_override() const { int32_t override_timeout = (int32_t)(*RC_Channels::override_timeout); return (override_value > 0) && ((override_timeout < 0) || ((AP_HAL::millis() - last_override_time) < (uint32_t)(override_timeout * 1000))); } bool RC_Channel::min_max_configured() const { if (configured_mask & (1U << ch_in)) { return true; } if (radio_min.configured() && radio_max.configured()) { // once a channel is known to be configured it has to stay // configured due to the nature of AP_Param configured_mask |= (1U<= 2200) { return; // This is an error condition } modeswitch_pos_t position; if (pulsewidth < 1231) position = 0; else if (pulsewidth < 1361) position = 1; else if (pulsewidth < 1491) position = 2; else if (pulsewidth < 1621) position = 3; else if (pulsewidth < 1750) position = 4; else position = 5; if (mode_switch_state.last_position == position) { // nothing to do return; } const uint32_t tnow_ms = AP_HAL::millis(); if (position != mode_switch_state.debounced_position) { mode_switch_state.debounced_position = position; // store time that switch last moved mode_switch_state.last_edge_time_ms = tnow_ms; return; } if (tnow_ms - mode_switch_state.last_edge_time_ms < MODE_SWITCH_DEBOUNCE_TIME_MS) { // still in debounce return; } // set flight mode and simple mode setting mode_switch_changed(position); // set the last switch position. This marks the // transition as complete, even if the mode switch actually // failed. This prevents the vehicle changing modes // unexpectedly some time later. mode_switch_state.last_position = position; } // // support for auxillary switches: // // init_aux_switch_function - initialize aux functions void RC_Channel::init_aux_function(const aux_func_t ch_option, const aux_switch_pos_t ch_flag) { // init channel options switch(ch_option) { // the following functions to not need to be initialised: case RELAY: case RELAY2: case RELAY3: case RELAY4: case CAMERA_TRIGGER: case DO_NOTHING: break; default: gcs().send_text(MAV_SEVERITY_WARNING, "Failed to initialise RC function (%u)", ch_option); break; } } void RC_Channel::read_aux() { const aux_func_t _option = (aux_func_t)option.get(); if (_option == DO_NOTHING) { // may wish to add special cases for other "AUXSW" things // here e.g. RCMAP_ROLL etc once they become options return; } const aux_switch_pos_t new_position = read_3pos_switch(); const aux_switch_pos_t old_position = old_switch_position(); if (new_position == old_position) { debounce.count = 0; return; } if (debounce.new_position != new_position) { debounce.new_position = new_position; debounce.count = 0; } // a value of 2 means we need 3 values in a row with the same // value to activate if (debounce.count++ < 2) { return; } // debounced; undertake the action: do_aux_function(_option, new_position); set_old_switch_position(new_position); } void RC_Channel::do_aux_function_camera_trigger(const aux_switch_pos_t ch_flag) { AP_Camera *camera = AP::camera(); if (camera == nullptr) { return; } if (ch_flag == HIGH) { camera->take_picture(); } } void RC_Channel::do_aux_function_relay(const uint8_t relay, bool val) { AP_ServoRelayEvents *servorelayevents = AP::servorelayevents(); if (servorelayevents == nullptr) { return; } servorelayevents->do_set_relay(relay, val); } void RC_Channel::do_aux_function(const aux_func_t ch_option, const aux_switch_pos_t ch_flag) { switch(ch_option) { case CAMERA_TRIGGER: do_aux_function_camera_trigger(ch_flag); break; case RELAY: do_aux_function_relay(0, ch_flag == HIGH); break; case RELAY2: do_aux_function_relay(1, ch_flag == HIGH); break; case RELAY3: do_aux_function_relay(2, ch_flag == HIGH); break; case RELAY4: do_aux_function_relay(3, ch_flag == HIGH); break; default: gcs().send_text(MAV_SEVERITY_INFO, "Invalid channel option (%u)", ch_option); break; } } void RC_Channel::init_aux() { const aux_switch_pos_t position = read_3pos_switch(); set_old_switch_position(position); init_aux_function((aux_func_t)option.get(), position); } // read_3pos_switch RC_Channel::aux_switch_pos_t RC_Channel::read_3pos_switch() const { const uint16_t in = get_radio_in(); if (in < AUX_PWM_TRIGGER_LOW) return LOW; // switch is in low position if (in > AUX_PWM_TRIGGER_HIGH) return HIGH; // switch is in high position return MIDDLE; // switch is in middle position } RC_Channel *RC_Channels::find_channel_for_option(const RC_Channel::aux_func_t option) { for (uint8_t i=0; ioption.get() == option) { return c; } } return nullptr; } // duplicate_options_exist - returns true if any options are duplicated bool RC_Channels::duplicate_options_exist() { uint8_t auxsw_option_counts[256] = {}; for (uint8_t i=0; ioption.get(); if (option > sizeof(auxsw_option_counts)) { continue; } auxsw_option_counts[option]++; } for (uint16_t i=0; i 1) { return true; } } return false; }