/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* singlecopter simulator class */ #include "SIM_SingleCopter.h" #include using namespace SITL; SingleCopter::SingleCopter(const char *home_str, const char *frame_str) : Aircraft(home_str, frame_str) { mass = 2.0f; if (strstr(frame_str, "coax")) { frame_type = FRAME_COAX; } else { frame_type = FRAME_SINGLE; } /* scaling from motor power to Newtons. Allows the copter to hover against gravity when the motor is at hover_throttle */ thrust_scale = (mass * GRAVITY_MSS) / hover_throttle; frame_height = 0.1; } /* update the copter simulation by one time step */ void SingleCopter::update(const struct sitl_input &input) { // get wind vector setup update_wind(input); float actuator[4]; for (uint8_t i=0; i<4; i++) { actuator[i] = constrain_float((input.servos[i]-1500) / 500.0f, -1, 1); } float thrust; float yaw_thrust; float roll_thrust; float pitch_thrust; switch (frame_type) { case FRAME_SINGLE: thrust = constrain_float((input.servos[4]-1000) / 1000.0f, 0, 1); yaw_thrust = -(actuator[0] + actuator[1] + actuator[2] + actuator[3]) * 0.25f * thrust + thrust * rotor_rot_accel; roll_thrust = (actuator[0] - actuator[2]) * 0.5f * thrust; pitch_thrust = (actuator[1] - actuator[3]) * 0.5f * thrust; break; case FRAME_COAX: default: { float motor1 = constrain_float((input.servos[4]-1000) / 1000.0f, 0, 1); float motor2 = constrain_float((input.servos[5]-1000) / 1000.0f, 0, 1); thrust = 0.5f*(motor1 + motor2); yaw_thrust = -(actuator[0] + actuator[1] + actuator[2] + actuator[3]) * 0.25f * thrust + (motor2 - motor1) * rotor_rot_accel; roll_thrust = (actuator[0] - actuator[2]) * 0.5f * thrust; pitch_thrust = (actuator[1] - actuator[3]) * 0.5f * thrust; break; } } // rotational acceleration, in rad/s/s, in body frame Vector3f rot_accel(roll_thrust * roll_rate_max, pitch_thrust * pitch_rate_max, yaw_thrust * yaw_rate_max); // rotational air resistance rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; // air resistance Vector3f air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity); // scale thrust to newtons thrust *= thrust_scale; accel_body = Vector3f(0, 0, -thrust / mass); accel_body += dcm.transposed() * air_resistance; bool was_on_ground = on_ground(position); update_dynamics(rot_accel); // constrain height to the ground if (on_ground(position) && !was_on_ground) { // zero roll/pitch, but keep yaw float r, p, y; dcm.to_euler(&r, &p, &y); dcm.from_euler(0, 0, y); position.z = -(ground_level + frame_height - home.alt*0.01f); velocity_ef.zero(); } // update lat/lon/altitude update_position(); }