// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Copyright 2010 Michael Smith, all rights reserved. // Derived closely from: /**************************************** * 2D Vector Classes * By Bill Perone (billperone@yahoo.com) * Original: 9-16-2002 * Revised: 19-11-2003 * 18-12-2003 * 06-06-2004 * * © 2003, This code is provided "as is" and you can use it freely as long as * credit is given to Bill Perone in the application it is used in ****************************************/ #pragma once #include template struct Vector2 { T x, y; // trivial ctor constexpr Vector2() : x(0) , y(0) {} // setting ctor constexpr Vector2(const T x0, const T y0) : x(x0) , y(y0) {} // function call operator void operator ()(const T x0, const T y0) { x= x0; y= y0; } // test for equality bool operator ==(const Vector2 &v) const; // test for inequality bool operator !=(const Vector2 &v) const; // negation Vector2 operator -(void) const; // addition Vector2 operator +(const Vector2 &v) const; // subtraction Vector2 operator -(const Vector2 &v) const; // uniform scaling Vector2 operator *(const T num) const; // uniform scaling Vector2 operator /(const T num) const; // addition Vector2 &operator +=(const Vector2 &v); // subtraction Vector2 &operator -=(const Vector2 &v); // uniform scaling Vector2 &operator *=(const T num); // uniform scaling Vector2 &operator /=(const T num); // dot product T operator *(const Vector2 &v) const; // cross product T operator %(const Vector2 &v) const; // computes the angle between this vector and another vector float angle(const Vector2 &v2) const; // computes the angle in radians between the origin and this vector T angle(void) const; // check if any elements are NAN bool is_nan(void) const; // check if any elements are infinity bool is_inf(void) const; // check if all elements are zero bool is_zero(void) const { return (fabsf(x) < FLT_EPSILON) && (fabsf(y) < FLT_EPSILON); } // zero the vector void zero() { x = y = 0; } // gets the length of this vector squared T length_squared() const { return (T)(*this * *this); } // gets the length of this vector float length(void) const; // normalizes this vector void normalize() { *this/=length(); } // returns the normalized vector Vector2 normalized() const { return *this/length(); } // reflects this vector about n void reflect(const Vector2 &n) { Vector2 orig(*this); project(n); *this= *this*2 - orig; } // projects this vector onto v void project(const Vector2 &v) { *this= v * (*this * v)/(v*v); } // returns this vector projected onto v Vector2 projected(const Vector2 &v) { return v * (*this * v)/(v*v); } }; typedef Vector2 Vector2i; typedef Vector2 Vector2ui; typedef Vector2 Vector2l; typedef Vector2 Vector2ul; typedef Vector2 Vector2f;