// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // // AP_IMU.cpp - IMU Sensor Library for Ardupilot Mega // Code by Michael Smith, Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com // // This library works with the ArduPilot Mega and "Oilpan" // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // /// @file AP_IMU.h /// @brief IMU driver for the APM oilpan #include #include #include #include "AP_IMU_Oilpan.h" // XXX secret knowledge about the APM/oilpan wiring // #define A_LED_PIN 37 #define C_LED_PIN 35 // Sensors: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ const uint8_t AP_IMU_Oilpan::_sensors[6] = { 1, 2, 0, 4, 5, 6}; // Channel assignments on the APM oilpan const int8_t AP_IMU_Oilpan::_sensor_signs[6] = { 1,-1,-1, 1,-1,-1}; // Channel orientation vs. normal // Temp compensation curve constants // These must be produced by measuring data and curve fitting // [X/Y/Z gyro][A/B/C or 0 order/1st order/2nd order constants] // const float AP_IMU_Oilpan::_gyro_temp_curve[3][3] = { {1665,0,0}, {1665,0,0}, {1665,0,0} }; void AP_IMU_Oilpan::init(Start_style style) { // if we are warm-starting, load the calibration data from EEPROM and go // if (WARM_START == style) { _sensor_cal.load(); } else { // do cold-start calibration for both accel and gyro _init_gyro(); _init_accel(); // save calibration _sensor_cal.save(); } } /**************************************************/ void AP_IMU_Oilpan::init_gyro() { _init_gyro(); _sensor_cal.save(); } void AP_IMU_Oilpan::_init_gyro() { int flashcount = 0; int tc_temp; float adc_in; // cold start tc_temp = _adc->Ch(_gyro_temp_ch); delay(500); Serial.println("Init Gyro"); for(int c = 0; c < 25; c++){ // Mostly we are just flashing the LED's here to tell the user to keep the IMU still digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); delay(20); for (int i = 0; i < 6; i++) adc_in = _adc->Ch(_sensors[i]); digitalWrite(A_LED_PIN, HIGH); digitalWrite(C_LED_PIN, LOW); delay(20); } for (int j = 0; j <= 2; j++){ adc_in -= _sensor_compensation(j, tc_temp); _sensor_cal[j] = adc_in; } for(int i = 0; i < 50; i++){ for (int j = 0; j < 3; j++){ adc_in = _adc->Ch(_sensors[j]); // Subtract temp compensated typical gyro bias adc_in -= _sensor_compensation(j, tc_temp); // filter _sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1; } delay(20); if(flashcount == 5) { Serial.print("*"); digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); } flashcount++; } } void AP_IMU_Oilpan::init_accel() { _init_accel(); _sensor_cal.save(); } void AP_IMU_Oilpan::_init_accel() { int flashcount = 0; float adc_in; // cold start delay(500); Serial.println("Init Accel"); // init to initial reading (unlike gyro which presumes zero...) // for (int j = 3; j < 6; j++){ adc_in = _adc->Ch(_sensors[j]); adc_in -= _sensor_compensation(j, 0); // XXX secret knowledge, temperature ignored _sensor_cal[j] = adc_in; } for(int i = 0; i < 50; i++){ // We take some readings... delay(20); for (int j = 3; j < 6; j++){ adc_in = _adc->Ch(_sensors[j]); adc_in -= _sensor_compensation(j, 0); // XXX secret knowledge, temperature ignored _sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1; } if(flashcount == 5) { Serial.print("*"); digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); } flashcount++; } Serial.println(" "); // null gravity from the Z accel _sensor_cal[5] += _gravity * _sensor_signs[5]; } /**************************************************/ // Returns the temperature compensated raw gyro value //--------------------------------------------------- float AP_IMU_Oilpan::_sensor_compensation(uint8_t channel, int temperature) const { // do gyro temperature compensation if (channel < 3) { return _gyro_temp_curve[channel][0] + _gyro_temp_curve[channel][1] * temperature + _gyro_temp_curve[channel][2] * temperature * temperature; } // do fixed-offset accelerometer compensation return 2025; // XXX magic number! } float AP_IMU_Oilpan::_sensor_in(uint8_t channel, int temperature) { float adc_in; // get the compensated sensor value // adc_in = _adc->Ch(_sensors[channel]) - _sensor_compensation(channel, temperature); // adjust for sensor sign and apply calibration offset // if (_sensor_signs[channel] < 0) { adc_in = _sensor_cal[channel] - adc_in; } else { adc_in = adc_in - _sensor_cal[channel]; } // constrain sensor readings to the sensible range // if (fabs(adc_in) > _adc_constraint) { adc_constraints++; // We keep track of the number of times adc_in = constrain(adc_in, -_adc_constraint, _adc_constraint); // Throw out nonsensical values } return adc_in; } bool AP_IMU_Oilpan::update(void) { int tc_temp = _adc->Ch(_gyro_temp_ch); // convert corrected gyro readings to delta acceleration // _gyro.x = ToRad(_gyro_gain_x) * _sensor_in(0, tc_temp); _gyro.y = ToRad(_gyro_gain_y) * _sensor_in(1, tc_temp); _gyro.z = ToRad(_gyro_gain_z) * _sensor_in(2, tc_temp); // convert corrected accelerometer readings to acceleration // _accel.x = _accel_scale * _sensor_in(3, tc_temp); _accel.y = _accel_scale * _sensor_in(4, tc_temp); _accel.z = _accel_scale * _sensor_in(5, tc_temp); // always updated return true; }