/* * AP_Controller.h * Copyright (C) James Goppert 2010 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #ifndef AP_Controller_H #define AP_Controller_H #include #include #include #include #include /// Block class Block { public: Block() : _input(), _output() { } virtual void update(const float & dt) = 0; virtual void connect( Block * block) { } const char * getName() { return _name; } const Vector < AP_Float * > & getOutput() const { return _output; } protected: const char * _name; Vector< const AP_Float * > _input; Vector< AP_Float * > _output; }; /// Servo Block class ToServo: public Block { public: ToServo(AP_RcChannel * ch) : _ch(ch) { } virtual void connect(Block * block) { if (block->getOutput().getSize() > 0) _input.push_back(block->getOutput()[0]); } virtual void update(const float & dt = 0) { if (_input.getSize() > 0) { _ch->setNormalized(_input[0]->get()); } } private: float _position; AP_RcChannel * _ch; }; /// SumGain class SumGain : public Block { public: /// Constructor that allows 1-8 sum gain pairs, more /// can be added if necessary SumGain( AP_Float & var1 = AP_Float_zero, AP_Float & gain1 = AP_Float_zero, AP_Float & var2 = AP_Float_zero, AP_Float & gain2 = AP_Float_zero, AP_Float & var3 = AP_Float_zero, AP_Float & gain3 = AP_Float_zero, AP_Float & var4 = AP_Float_zero, AP_Float & gain4 = AP_Float_zero, AP_Float & var5 = AP_Float_zero, AP_Float & gain5 = AP_Float_zero, AP_Float & var6 = AP_Float_zero, AP_Float & gain6 = AP_Float_zero, AP_Float & var7 = AP_Float_zero, AP_Float & gain7 = AP_Float_zero, AP_Float & var8 = AP_Float_zero, AP_Float & gain8 = AP_Float_zero) { if ( (&var1 != &AP_Float_zero) && (&gain1 != &AP_Float_zero) ) add(var1,gain1); if ( (&var2 != &AP_Float_zero) && (&gain2 != &AP_Float_zero) ) add(var2,gain2); if ( (&var3 != &AP_Float_zero) && (&gain3 != &AP_Float_zero) ) add(var3,gain3); if ( (&var4 != &AP_Float_zero) && (&gain4 != &AP_Float_zero) ) add(var4,gain4); if ( (&var5 != &AP_Float_zero) && (&gain5 != &AP_Float_zero) ) add(var5,gain5); if ( (&var6 != &AP_Float_zero) && (&gain6 != &AP_Float_zero) ) add(var6,gain6); if ( (&var7 != &AP_Float_zero) && (&gain7 != &AP_Float_zero) ) add(var7,gain7); if ( (&var8 != &AP_Float_zero) && (&gain8 != &AP_Float_zero) ) add(var8,gain8); // create output _output.push_back(new AP_Float(0)); } void add(AP_Float & var, AP_Float & gain) { _input.push_back(&var); _gain.push_back(&gain); } virtual void update(const float & dt = 0) { if (_output.getSize() < 1) return; float sum =0; for (int i=0;i<_input.getSize();i++) sum += _input[i]->get() * _gain[i]->get() ; _output[0]->set(sum); } private: Vector< AP_Float * > _gain; }; /// PID block class Pid : public Block, public AP_Var_group { public: Pid(AP_Var::Key key, const prog_char * name, float kP = 0.0, float kI = 0.0, float kD = 0.0, float iMax = 0.0, uint8_t dFcut = 20.0 ) : AP_Var_group(key,name), _kP(this,1,kP,PSTR("P")), _kI(this,2,kI,PSTR("I")), _kD(this,3,kD,PSTR("D")), _iMax(this,4,iMax,PSTR("IMAX")), _fCut(this,5,dFcut,PSTR("FCUT")) { _output.push_back(new AP_Float(0)); } virtual void connect(Block * block) { if (!block) return; if (block->getOutput().getSize() > 0) _input.push_back(block->getOutput()[0]); } virtual void update(const float & dt) { if (_output.getSize() < 1 || (!_input[0]) || (!_output[0]) ) return; // derivative with low pass float RC = 1/(2*M_PI*_fCut); // low pass filter _eD = _eD + ( ( _eP - _input[0]->get() )/dt - _eD ) * (dt / (dt + RC)); // proportional, note must come after derivative // because derivatve uses _eP as previous value _eP = _input[0]->get(); // integral _eI += _eP*dt; // wind up guard if (_eI > _iMax) _eI = _iMax; else if (_eI < -_iMax) _eI = -_iMax; // pid sum _output[0]->set(_kP*_eP + _kI*_eI + _kD*_eD); // debug output /*Serial.println("kP, kI, kD: "); Serial.print(_kP,5); Serial.print(" "); Serial.print(_kI,5); Serial.print(" "); Serial.println(_kD,5); Serial.print("eP, eI, eD: "); Serial.print(_eP,5); Serial.print(" "); Serial.print(_eI,5); Serial.print(" "); Serial.println(_eD,5); Serial.print("input: "); Serial.println(_input[0]->get(),5); Serial.print("output: "); Serial.println(_output[0]->get(),5);*/ } private: float _eP; /// input float _eI; /// integral of input float _eD; /// derivative of input AP_Float _kP; /// proportional gain AP_Float _kI; /// integral gain AP_Float _kD; /// derivative gain AP_Float _iMax; /// integrator saturation AP_Uint8 _fCut; /// derivative low-pass cut freq (Hz) }; /// Controller class class AP_Controller { public: void addBlock(Block * block) { if (_blocks.getSize() > 0) block->connect(_blocks[_blocks.getSize()-1]); _blocks.push_back(block); } void update(const double dt) { for (int i=0;i<_blocks.getSize();i++) { if (!_blocks[i]) continue; _blocks[i]->update(dt); } } private: Vector _blocks; }; #endif // AP_Controller_H // vim:ts=4:sw=4:expandtab