/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Landing_Deepstall.cpp - Landing logic handler for ArduPlane for deepstall landings */ #include "AP_Landing.h" #include #include #include #include #include // table of user settable parameters for deepstall const AP_Param::GroupInfo AP_Landing_Deepstall::var_info[] = { // @Param: V_FWD // @DisplayName: Deepstall forward velocity // @Description: The forward velocity of the aircraft while stalled // @Range: 0 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("V_FWD", 1, AP_Landing_Deepstall, forward_speed, 1), // @Param: SLOPE_A // @DisplayName: Deepstall slope a // @Description: The a component of distance = a*wind + b // @User: Advanced AP_GROUPINFO("SLOPE_A", 2, AP_Landing_Deepstall, slope_a, 1), // @Param: SLOPE_B // @DisplayName: Deepstall slope b // @Description: The a component of distance = a*wind + b // @User: Advanced AP_GROUPINFO("SLOPE_B", 3, AP_Landing_Deepstall, slope_b, 1), // @Param: APP_EXT // @DisplayName: Deepstall approach extension // @Description: The forward velocity of the aircraft while stalled // @Range: 10 200 // @Units: m // @User: Advanced AP_GROUPINFO("APP_EXT", 4, AP_Landing_Deepstall, approach_extension, 50), // @Param: V_DWN // @DisplayName: Deepstall velocity down // @Description: The downward velocity of the aircraft while stalled // @Range: 0 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("V_DWN", 5, AP_Landing_Deepstall, down_speed, 2), // @Param: SLEW_SPD // @DisplayName: Deepstall slew speed // @Description: The speed at which the elevator slews to deepstall // @Range: 0 2 // @Units: s // @User: Advanced AP_GROUPINFO("SLEW_SPD", 6, AP_Landing_Deepstall, slew_speed, 0.5), // @Param: ELEV_PWM // @DisplayName: Deepstall elevator PWM // @Description: The PWM value in microseconds for the elevator at full deflection in deepstall // @Range: 900 2100 // @Units: PWM // @User: Advanced AP_GROUPINFO("ELEV_PWM", 7, AP_Landing_Deepstall, elevator_pwm, 1500), // @Param: ARSP_MAX // @DisplayName: Deepstall enabled airspeed // @Description: The maximum aispeed where the deepstall steering controller is allowed to have control // @Range: 5 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("ARSP_MAX", 8, AP_Landing_Deepstall, handoff_airspeed, 15.0), // @Param: ARSP_MIN // @DisplayName: Deepstall minimum derating airspeed // @Description: Deepstall lowest airspeed where the deepstall controller isn't allowed full control // @Range: 5 20 // @Units: m/s // @User: Advanced AP_GROUPINFO("ARSP_MIN", 9, AP_Landing_Deepstall, handoff_lower_limit_airspeed, 10.0), // @Param: L1 // @DisplayName: Deepstall L1 period // @Description: Deepstall L1 navigational controller period // @Range: 5 50 // @Units: m // @User: Advanced AP_GROUPINFO("L1", 10, AP_Landing_Deepstall, L1_period, 30.0), // @Param: L1_I // @DisplayName: Deepstall L1 I gain // @Description: Deepstall L1 integratior gain // @Range: 0 1 // @User: Advanced AP_GROUPINFO("L1_I", 11, AP_Landing_Deepstall, L1_i, 0), // @Param: YAW_LIM // @DisplayName: Deepstall yaw rate limit // @Description: The yaw rate limit while navigating in deepstall // @Range: 0 90 // @Units degrees per second // @User: Advanced AP_GROUPINFO("YAW_LIM", 12, AP_Landing_Deepstall, yaw_rate_limit, 10), // @Param: L1_TCON // @DisplayName: Deepstall L1 time constant // @Description: Time constant for deepstall L1 control // @Range: 0 1 // @Units seconds // @User: Advanced AP_GROUPINFO("L1_TCON", 13, AP_Landing_Deepstall, time_constant, 0.4), // @Group: DS_ // @Path: ../PID/PID.cpp AP_SUBGROUPINFO(ds_PID, "", 14, AP_Landing_Deepstall, PID), // @Param: ABORTALT // @DisplayName: Deepstall minimum abort altitude // @Description: The minimum altitude which the aircraft must be above to abort a deepstall landing // @Range: 0 50 // @Units meters // @User: Advanced AP_GROUPINFO("ABORTALT", 15, AP_Landing_Deepstall, min_abort_alt, 0.0f), // @Param: AIL_SCL // @DisplayName: Aileron landing gain scalaing // @Description: A scalar to reduce or increase the aileron control // @Range: 0 2.0 // @User: Advanced AP_GROUPINFO("AIL_SCL", 16, AP_Landing_Deepstall, aileron_scalar, 1.0f), AP_GROUPEND }; // if DEBUG_PRINTS is defined statustexts will be sent to the GCS for debug purposes // #define DEBUG_PRINTS void AP_Landing_Deepstall::do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude) { stage = DEEPSTALL_STAGE_FLY_TO_LANDING; ds_PID.reset(); L1_xtrack_i = 0.0f; hold_level = false; // come out of yaw lock // load the landing point in, the rest of path building is deferred for a better wind estimate memcpy(&landing_point, &cmd.content.location, sizeof(Location)); if (!landing_point.relative_alt && !landing_point.terrain_alt) { approach_alt_offset = cmd.p1; landing_point.alt += approach_alt_offset * 100; } else { approach_alt_offset = 0.0f; } } // currently identical to the slope aborts void AP_Landing_Deepstall::verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed) { // when aborting a landing, mimic the verify_takeoff with steering hold. Once // the altitude has been reached, restart the landing sequence throttle_suppressed = false; landing.nav_controller->update_heading_hold(prev_WP_loc.get_bearing_to(next_WP_loc)); } /* update navigation for landing */ bool AP_Landing_Deepstall::verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc, const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms, const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range) { switch (stage) { case DEEPSTALL_STAGE_FLY_TO_LANDING: if (current_loc.get_distance(landing_point) > abs(2 * landing.aparm.loiter_radius)) { landing.nav_controller->update_waypoint(current_loc, landing_point); return false; } stage = DEEPSTALL_STAGE_ESTIMATE_WIND; loiter_sum_cd = 0; // reset the loiter counter FALLTHROUGH; case DEEPSTALL_STAGE_ESTIMATE_WIND: { landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1); if (!landing.nav_controller->reached_loiter_target() || (fabsf(height - approach_alt_offset) > DEEPSTALL_LOITER_ALT_TOLERANCE)) { // wait until the altitude is correct before considering a breakout return false; } // only count loiter progress when within the target altitude int32_t target_bearing = landing.nav_controller->target_bearing_cd(); int32_t delta = wrap_180_cd(target_bearing - last_target_bearing); delta *= (landing_point.loiter_ccw ? -1 : 1); if (delta > 0) { // only accumulate turns in the correct direction loiter_sum_cd += delta; } last_target_bearing = target_bearing; if (loiter_sum_cd < 36000) { // wait until we've done at least one complete loiter at the correct altitude return false; } stage = DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT; loiter_sum_cd = 0; // reset the loiter counter FALLTHROUGH; } case DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT: // rebuild the approach path if we have done less then a full circle to allow it to be // more into the wind as the estimator continues to refine itself, and allow better // compensation on windy days. This is limited to a single full circle though, as on // a no wind day you could be in this loop forever otherwise. if (loiter_sum_cd < 36000) { build_approach_path(false); } if (!verify_breakout(current_loc, arc_entry, height - approach_alt_offset)) { int32_t target_bearing = landing.nav_controller->target_bearing_cd(); int32_t delta = wrap_180_cd(target_bearing - last_target_bearing); if (delta > 0) { // only accumulate turns in the correct direction loiter_sum_cd += delta; } last_target_bearing = target_bearing; landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1); return false; } stage = DEEPSTALL_STAGE_FLY_TO_ARC; memcpy(&breakout_location, ¤t_loc, sizeof(Location)); FALLTHROUGH; case DEEPSTALL_STAGE_FLY_TO_ARC: if (current_loc.get_distance(arc_entry) > 2 * landing.aparm.loiter_radius) { landing.nav_controller->update_waypoint(breakout_location, arc_entry); return false; } stage = DEEPSTALL_STAGE_ARC; FALLTHROUGH; case DEEPSTALL_STAGE_ARC: { Vector2f groundspeed = landing.ahrs.groundspeed_vector(); if (!landing.nav_controller->reached_loiter_target() || (fabsf(wrap_180(target_heading_deg - degrees(atan2f(-groundspeed.y, -groundspeed.x) + M_PI))) >= 10.0f)) { landing.nav_controller->update_loiter(arc, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1); return false; } stage = DEEPSTALL_STAGE_APPROACH; } FALLTHROUGH; case DEEPSTALL_STAGE_APPROACH: { Location entry_point; landing.nav_controller->update_waypoint(arc_exit, extended_approach); float height_above_target; if (is_zero(approach_alt_offset)) { landing.ahrs.get_relative_position_D_home(height_above_target); height_above_target = -height_above_target; } else { Location position; if (landing.ahrs.get_position(position)) { height_above_target = (position.alt - landing_point.alt + approach_alt_offset * 100) * 1e-2f; } else { height_above_target = approach_alt_offset; } } const float travel_distance = predict_travel_distance(landing.ahrs.wind_estimate(), height_above_target, false); memcpy(&entry_point, &landing_point, sizeof(Location)); entry_point.offset_bearing(target_heading_deg + 180.0, travel_distance); if (!current_loc.past_interval_finish_line(arc_exit, entry_point)) { if (current_loc.past_interval_finish_line(arc_exit, extended_approach)) { // this should never happen, but prevent against an indefinite fly away stage = DEEPSTALL_STAGE_FLY_TO_LANDING; } return false; } predict_travel_distance(landing.ahrs.wind_estimate(), height_above_target, true); stage = DEEPSTALL_STAGE_LAND; stall_entry_time = AP_HAL::millis(); const SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator); if (elevator != nullptr) { // take the last used elevator angle as the starting deflection // don't worry about bailing here if the elevator channel can't be found // that will be handled within override_servos initial_elevator_pwm = elevator->get_output_pwm(); } } FALLTHROUGH; case DEEPSTALL_STAGE_LAND: // while in deepstall the only thing verify needs to keep the extended approach point sufficently far away landing.nav_controller->update_waypoint(current_loc, extended_approach); landing.disarm_if_autoland_complete_fn(); return false; default: return true; } } bool AP_Landing_Deepstall::override_servos(void) { if (stage != DEEPSTALL_STAGE_LAND) { return false; } SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator); if (elevator == nullptr) { // deepstalls are impossible without these channels, abort the process gcs().send_text(MAV_SEVERITY_CRITICAL, "Deepstall: Unable to find the elevator channels"); request_go_around(); return false; } // calculate the progress on slewing the elevator float slew_progress = 1.0f; if (slew_speed > 0) { slew_progress = (AP_HAL::millis() - stall_entry_time) / (100.0f * slew_speed); } // mix the elevator to the correct value elevator->set_output_pwm(linear_interpolate(initial_elevator_pwm, elevator_pwm, slew_progress, 0.0f, 1.0f)); // use the current airspeed to dictate the travel limits float airspeed; if (!landing.ahrs.airspeed_estimate(airspeed)) { airspeed = 0; // safely forces control to the deepstall steering since we don't have an estimate } // only allow the deepstall steering controller to run below the handoff airspeed if (slew_progress >= 1.0f || airspeed <= handoff_airspeed) { // run the steering conntroller float pid = update_steering(); float travel_limit = constrain_float((handoff_airspeed - airspeed) / (handoff_airspeed - handoff_lower_limit_airspeed) * 0.5f + 0.5f, 0.5f, 1.0f); float output = constrain_float(pid, -travel_limit, travel_limit); SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, output*4500*aileron_scalar); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, output*4500); SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); // this will normally be managed as part of landing, // but termination needs to set throttle control here } // hand off rudder control to deepstall controlled return true; } bool AP_Landing_Deepstall::request_go_around(void) { float current_altitude_d; landing.ahrs.get_relative_position_D_home(current_altitude_d); if (is_zero(min_abort_alt) || -current_altitude_d > min_abort_alt) { landing.flags.commanded_go_around = true; return true; } else { return false; } } bool AP_Landing_Deepstall::is_throttle_suppressed(void) const { return stage == DEEPSTALL_STAGE_LAND; } bool AP_Landing_Deepstall::is_flying_forward(void) const { return stage != DEEPSTALL_STAGE_LAND; } bool AP_Landing_Deepstall::is_on_approach(void) const { return stage == DEEPSTALL_STAGE_LAND; } bool AP_Landing_Deepstall::get_target_altitude_location(Location &location) { memcpy(&location, &landing_point, sizeof(Location)); return true; } int32_t AP_Landing_Deepstall::get_target_airspeed_cm(void) const { if (stage == DEEPSTALL_STAGE_APPROACH || stage == DEEPSTALL_STAGE_LAND) { return landing.pre_flare_airspeed * 100; } else { return landing.aparm.airspeed_cruise_cm; } } bool AP_Landing_Deepstall::send_deepstall_message(mavlink_channel_t chan) const { CHECK_PAYLOAD_SIZE2(DEEPSTALL); mavlink_msg_deepstall_send( chan, landing_point.lat, landing_point.lng, stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_exit.lat : 0.0f, stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_exit.lng : 0.0f, stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_entry.lat : 0.0f, stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_entry.lng : 0.0f, landing_point.alt * 0.01, stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? predicted_travel_distance : 0.0f, stage == DEEPSTALL_STAGE_LAND ? crosstrack_error : 0.0f, stage); return true; } const AP_Logger::PID_Info& AP_Landing_Deepstall::get_pid_info(void) const { return ds_PID.get_pid_info(); } void AP_Landing_Deepstall::Log(void) const { const AP_Logger::PID_Info& pid_info = ds_PID.get_pid_info(); struct log_DSTL pkt = { LOG_PACKET_HEADER_INIT(LOG_DSTL_MSG), time_us : AP_HAL::micros64(), stage : (uint8_t)stage, target_heading : target_heading_deg, target_lat : landing_point.lat, target_lng : landing_point.lng, target_alt : landing_point.alt, crosstrack_error : (int16_t)(stage >= DEEPSTALL_STAGE_LAND ? constrain_float(crosstrack_error * 1e2f, (float)INT16_MIN, (float)INT16_MAX) : 0), travel_distance : (int16_t)(stage >= DEEPSTALL_STAGE_LAND ? constrain_float(predicted_travel_distance * 1e2f, (float)INT16_MIN, (float)INT16_MAX) : 0), l1_i : stage >= DEEPSTALL_STAGE_LAND ? L1_xtrack_i : 0.0f, loiter_sum_cd : stage >= DEEPSTALL_STAGE_ESTIMATE_WIND ? loiter_sum_cd : 0, desired : pid_info.target, P : pid_info.P, I : pid_info.I, D : pid_info.D, }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } // termination handling, expected to set the servo outputs bool AP_Landing_Deepstall::terminate(void) { // if we were not in a deepstall, mark us as being in one if(!landing.flags.in_progress || stage != DEEPSTALL_STAGE_LAND) { stall_entry_time = AP_HAL::millis(); ds_PID.reset(); L1_xtrack_i = 0.0f; landing.flags.in_progress = true; stage = DEEPSTALL_STAGE_LAND; if(landing.ahrs.get_position(landing_point)) { build_approach_path(true); } else { hold_level = true; } } // set the servo ouptuts, this can fail, so this is the important return value for the AFS return override_servos(); } void AP_Landing_Deepstall::build_approach_path(bool use_current_heading) { float loiter_radius = landing.nav_controller->loiter_radius(landing.aparm.loiter_radius); Vector3f wind = landing.ahrs.wind_estimate(); // TODO: Support a user defined approach heading target_heading_deg = use_current_heading ? landing.ahrs.yaw_sensor * 1e-2 : (degrees(atan2f(-wind.y, -wind.x))); memcpy(&extended_approach, &landing_point, sizeof(Location)); memcpy(&arc_exit, &landing_point, sizeof(Location)); //extend the approach point to 1km away so that there is always a navigational target extended_approach.offset_bearing(target_heading_deg, 1000.0); float expected_travel_distance = predict_travel_distance(wind, is_zero(approach_alt_offset) ? landing_point.alt * 0.01f : approach_alt_offset, false); float approach_extension_m = expected_travel_distance + approach_extension; float loiter_radius_m_abs = fabsf(loiter_radius); // an approach extensions must be at least half the loiter radius, or the aircraft has a // decent chance to be misaligned on final approach approach_extension_m = MAX(approach_extension_m, loiter_radius_m_abs * 0.5f); arc_exit.offset_bearing(target_heading_deg + 180, approach_extension_m); memcpy(&arc, &arc_exit, sizeof(Location)); memcpy(&arc_entry, &arc_exit, sizeof(Location)); float arc_heading_deg = target_heading_deg + (landing_point.loiter_ccw ? -90.0f : 90.0f); arc.offset_bearing(arc_heading_deg, loiter_radius_m_abs); arc_entry.offset_bearing(arc_heading_deg, loiter_radius_m_abs * 2); #ifdef DEBUG_PRINTS // TODO: Send this information via a MAVLink packet gcs().send_text(MAV_SEVERITY_INFO, "Arc: %3.8f %3.8f", (double)(arc.lat / 1e7),(double)( arc.lng / 1e7)); gcs().send_text(MAV_SEVERITY_INFO, "Loiter en: %3.8f %3.8f", (double)(arc_entry.lat / 1e7), (double)(arc_entry.lng / 1e7)); gcs().send_text(MAV_SEVERITY_INFO, "Loiter ex: %3.8f %3.8f", (double)(arc_exit.lat / 1e7), (double)(arc_exit.lng / 1e7)); gcs().send_text(MAV_SEVERITY_INFO, "Extended: %3.8f %3.8f", (double)(extended_approach.lat / 1e7), (double)(extended_approach.lng / 1e7)); gcs().send_text(MAV_SEVERITY_INFO, "Extended by: %f (%f)", (double)approach_extension_m, (double)expected_travel_distance); gcs().send_text(MAV_SEVERITY_INFO, "Target Heading: %3.1f", (double)target_heading_deg); #endif // DEBUG_PRINTS } float AP_Landing_Deepstall::predict_travel_distance(const Vector3f wind, const float height, const bool print) { bool reverse = false; float course = radians(target_heading_deg); // a forward speed of 0 will result in a divide by 0 float forward_speed_ms = MAX(forward_speed, 0.1f); Vector2f wind_vec(wind.x, wind.y); // work with the 2D component of wind float wind_length = MAX(wind_vec.length(), 0.05f); // always assume a slight wind to avoid divide by 0 Vector2f course_vec(cosf(course), sinf(course)); float offset = course - atan2f(-wind.y, -wind.x); // estimator for how far the aircraft will travel while entering the stall float stall_distance = slope_a * wind_length * cosf(offset) + slope_b; float theta = acosf(constrain_float((wind_vec * course_vec) / wind_length, -1.0f, 1.0f)); if ((course_vec % wind_vec) > 0) { reverse = true; theta *= -1; } float cross_component = sinf(theta) * wind_length; float estimated_crab_angle = asinf(constrain_float(cross_component / forward_speed_ms, -1.0f, 1.0f)); if (reverse) { estimated_crab_angle *= -1; } float estimated_forward = cosf(estimated_crab_angle) * forward_speed_ms + cosf(theta) * wind_length; if (is_positive(down_speed)) { predicted_travel_distance = (estimated_forward * height / down_speed) + stall_distance; } else { // if we don't have a sane downward speed in a deepstall (IE not zero, and not // an ascent) then just provide the stall_distance as a reasonable approximation predicted_travel_distance = stall_distance; } if(print) { // allow printing the travel distances on the final entry as its used for tuning gcs().send_text(MAV_SEVERITY_INFO, "Deepstall: Entry: %0.1f (m) Travel: %0.1f (m)", (double)stall_distance, (double)predicted_travel_distance); } return predicted_travel_distance; } bool AP_Landing_Deepstall::verify_breakout(const Location ¤t_loc, const Location &target_loc, const float height_error) const { const Vector2f location_delta = current_loc.get_distance_NE(target_loc); const float heading_error = degrees(landing.ahrs.groundspeed_vector().angle(location_delta)); // Check to see if the the plane is heading toward the land waypoint. We use 20 degrees (+/-10 deg) // of margin so that the altitude to be within 5 meters of desired if (heading_error <= 10.0 && fabsf(height_error) < DEEPSTALL_LOITER_ALT_TOLERANCE) { // Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp return true; } return false; } float AP_Landing_Deepstall::update_steering() { Location current_loc; if ((!landing.ahrs.get_position(current_loc) || !landing.ahrs.healthy()) && !hold_level) { // panic if no position source is available // continue the stall but target just holding the wings held level as deepstall should be a minimal // energy configuration on the aircraft, and if a position isn't available aborting would be worse gcs().send_text(MAV_SEVERITY_CRITICAL, "Deepstall: Invalid data from AHRS. Holding level"); hold_level = true; } float desired_change = 0.0f; if (!hold_level) { uint32_t time = AP_HAL::millis(); float dt = constrain_float(time - last_time, (uint32_t)10UL, (uint32_t)200UL) * 1e-3; last_time = time; Vector2f ab = arc_exit.get_distance_NE(extended_approach); ab.normalize(); const Vector2f a_air = arc_exit.get_distance_NE(current_loc); crosstrack_error = a_air % ab; float sine_nu1 = constrain_float(crosstrack_error / MAX(L1_period, 0.1f), -0.7071f, 0.7107f); float nu1 = asinf(sine_nu1); if (L1_i > 0) { L1_xtrack_i += nu1 * L1_i / dt; L1_xtrack_i = constrain_float(L1_xtrack_i, -0.5f, 0.5f); nu1 += L1_xtrack_i; } desired_change = wrap_PI(radians(target_heading_deg) + nu1 - landing.ahrs.yaw) / time_constant; } float yaw_rate = landing.ahrs.get_gyro().z; float yaw_rate_limit_rps = radians(yaw_rate_limit); float error = wrap_PI(constrain_float(desired_change, -yaw_rate_limit_rps, yaw_rate_limit_rps) - yaw_rate); #ifdef DEBUG_PRINTS gcs().send_text(MAV_SEVERITY_INFO, "x: %f e: %f r: %f d: %f", (double)crosstrack_error, (double)error, (double)degrees(yaw_rate), (double)current_loc.get_distance(landing_point)); #endif // DEBUG_PRINTS return ds_PID.get_pid(error); }