#include <assert.h> #include <utility> #include <AP_Math/AP_Math.h> #include <AP_HAL/AP_HAL.h> #include "AP_Compass_LSM9DS1.h" #define LSM9DS1M_OFFSET_X_REG_L_M 0x05 #define LSM9DS1M_OFFSET_X_REG_H_M 0x06 #define LSM9DS1M_OFFSET_Y_REG_L_M 0x07 #define LSM9DS1M_OFFSET_Y_REG_H_M 0x08 #define LSM9DS1M_OFFSET_Z_REG_L_M 0x09 #define LSM9DS1M_OFFSET_Z_REG_H_M 0x0A #define LSM9DS1M_WHO_AM_I 0x0F #define WHO_AM_I_MAG 0x3D #define LSM9DS1M_CTRL_REG1_M 0x20 #define LSM9DS1M_TEMP_COMP (0x1 << 7) #define LSM9DS1M_XY_ULTRA_HIGH (0x3 << 5) #define LSM9DS1M_80HZ (0x7 << 2) #define LSM9DS1M_FAST_ODR (0x1 << 1) #define LSM9DS1M_CTRL_REG2_M 0x21 #define LSM9DS1M_FS_16G (0x3 << 5) #define LSM9DS1M_CTRL_REG3_M 0x22 #define LSM9DS1M_SPI_ENABLE (0x01 << 2) #define LSM9DS1M_CONTINUOUS_MODE 0x0 #define LSM9DS1M_CTRL_REG4_M 0x23 #define LSM9DS1M_Z_ULTRA_HIGH (0x3 << 2) #define LSM9DS1M_CTRL_REG5_M 0x24 #define LSM9DS1M_BDU (0x0 << 6) #define LSM9DS1M_STATUS_REG_M 0x27 #define LSM9DS1M_OUT_X_L_M 0x28 #define LSM9DS1M_OUT_X_H_M 0x29 #define LSM9DS1M_OUT_Y_L_M 0x2A #define LSM9DS1M_OUT_Y_H_M 0x2B #define LSM9DS1M_OUT_Z_L_M 0x2C #define LSM9DS1M_OUT_Z_H_M 0x2D #define LSM9DS1M_INT_CFG_M 0x30 #define LSM9DS1M_INT_SRC_M 0x31 #define LSM9DS1M_INT_THS_L_M 0x32 #define LSM9DS1M_INT_THS_H_M 0x33 struct PACKED sample_regs { uint8_t status; int16_t val[3]; }; extern const AP_HAL::HAL &hal; AP_Compass_Backend *AP_Compass_LSM9DS1::probe(Compass &compass, AP_HAL::OwnPtr<AP_HAL::Device> dev) { AP_Compass_LSM9DS1 *sensor = new AP_Compass_LSM9DS1(compass, std::move(dev), AP_COMPASS_TYPE_LSM9DS1); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } bool AP_Compass_LSM9DS1::init() { AP_HAL::Semaphore *bus_sem = _dev->get_semaphore(); if (!bus_sem || !bus_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { hal.console->printf("LSM9DS1: Unable to get bus semaphore\n"); return false; } if (!_check_id()) { hal.console->printf("LSM9DS1: Could not check id\n"); goto errout; } if (!_configure()) { hal.console->printf("LSM9DS1: Could not check id\n"); goto errout; } if (!_set_scale()) { hal.console->printf("LSM9DS1: Could not set scale\n"); goto errout; } _compass_instance = register_compass(); set_dev_id(_compass_instance, _dev_id); _dev->register_periodic_callback(10000, FUNCTOR_BIND_MEMBER(&AP_Compass_LSM9DS1::_update, bool)); bus_sem->give(); return true; errout: bus_sem->give(); return false; } void AP_Compass_LSM9DS1::_dump_registers() { hal.console->println("LSMDS1 registers"); for (uint8_t reg = LSM9DS1M_OFFSET_X_REG_L_M; reg <= LSM9DS1M_INT_THS_H_M; reg++) { uint8_t v = _register_read(reg); hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v); if ((reg - (LSM9DS1M_OFFSET_X_REG_L_M-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); } bool AP_Compass_LSM9DS1::_update(void) { struct sample_regs regs; Vector3f raw_field; uint32_t time_us = AP_HAL::micros(); if (!_block_read(LSM9DS1M_STATUS_REG_M, (uint8_t *) ®s, sizeof(regs))) { goto fail; } if (regs.status & 0x80) { goto fail; } raw_field = Vector3f(regs.val[0], regs.val[1], regs.val[2]); if (is_zero(raw_field.x) && is_zero(raw_field.y) && is_zero(raw_field.z)) { goto fail; } raw_field *= _scaling; // rotate raw_field from sensor frame to body frame rotate_field(raw_field, _compass_instance); // publish raw_field (uncorrected point sample) for calibration use publish_raw_field(raw_field, time_us, _compass_instance); // correct raw_field for known errors correct_field(raw_field, _compass_instance); if (_sem->take(0)) { _mag_x_accum += raw_field.x; _mag_y_accum += raw_field.y; _mag_z_accum += raw_field.z; _accum_count++; if (_accum_count == 10) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 5; } _sem->give(); } fail: return true; } void AP_Compass_LSM9DS1::read() { if (!_sem->take_nonblocking()) { return; } if (_accum_count == 0) { /* We're not ready to publish*/ _sem->give(); return; } Vector3f field(_mag_x_accum, _mag_y_accum, _mag_z_accum); field /= _accum_count; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _accum_count = 0; _sem->give(); #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO2 field.rotate(ROTATION_ROLL_180); #endif publish_filtered_field(field, _compass_instance); } bool AP_Compass_LSM9DS1::_check_id(void) { // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); uint8_t value = _register_read(LSM9DS1M_WHO_AM_I); if (value != WHO_AM_I_MAG) { hal.console->printf("LSM9DS1: unexpected WHOAMI 0x%x\n", (unsigned)value); return false; } _dev->set_speed(AP_HAL::Device::SPEED_HIGH); return true; } bool AP_Compass_LSM9DS1::_configure(void) { _register_write(LSM9DS1M_CTRL_REG1_M, LSM9DS1M_TEMP_COMP | LSM9DS1M_XY_ULTRA_HIGH | LSM9DS1M_80HZ | LSM9DS1M_FAST_ODR); _register_write(LSM9DS1M_CTRL_REG2_M, LSM9DS1M_FS_16G); _register_write(LSM9DS1M_CTRL_REG3_M, LSM9DS1M_CONTINUOUS_MODE); _register_write(LSM9DS1M_CTRL_REG4_M, LSM9DS1M_Z_ULTRA_HIGH); _register_write(LSM9DS1M_CTRL_REG5_M, LSM9DS1M_BDU); return true; } bool AP_Compass_LSM9DS1::_set_scale(void) { static const uint8_t FS_M_MASK = 0xc; _register_modify(LSM9DS1M_CTRL_REG2_M, FS_M_MASK, LSM9DS1M_FS_16G); _scaling = 0.58f; return true; } AP_Compass_LSM9DS1::AP_Compass_LSM9DS1(Compass &compass, AP_HAL::OwnPtr<AP_HAL::Device> dev, uint32_t dev_id) : AP_Compass_Backend(compass) , _dev(std::move(dev)) , _dev_id(dev_id) { } uint8_t AP_Compass_LSM9DS1::_register_read(uint8_t reg) { uint8_t val = 0; /* set READ bit */ reg |= 0x80; _dev->read_registers(reg, &val, 1); return val; } bool AP_Compass_LSM9DS1::_block_read(uint8_t reg, uint8_t *buf, uint32_t size) { /* set !MS bit */ reg |= 0xc0; return _dev->read_registers(reg, buf, size); } void AP_Compass_LSM9DS1::_register_write(uint8_t reg, uint8_t val) { _dev->write_register(reg, val); } void AP_Compass_LSM9DS1::_register_modify(uint8_t reg, uint8_t clearbits, uint8_t setbits) { uint8_t val; val = _register_read(reg); val &= ~clearbits; val |= setbits; _register_write(reg, val); }