// This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include #include #include #include #include #include "RcAioPRU_bin.h" #define NUM_RING_ENTRIES 300 #define RCOUT_PRUSS_RAM_BASE 0x4a302000 #define RCOUT_PRUSS_CTRL_BASE 0x4a324000 #define RCOUT_PRUSS_IRAM_BASE 0x4a338000 #define RCIN_PRUSS_RAM_BASE 0x4a303000 struct ring_buffer { volatile uint16_t ring_head; volatile uint16_t ring_tail; struct { uint32_t s1; uint32_t s0; } buffer[NUM_RING_ENTRIES]; }; struct pwm { volatile uint32_t enable; volatile uint32_t ch1_hi_time; volatile uint32_t ch1_t_time; volatile uint32_t ch2_hi_time; volatile uint32_t ch2_t_time; volatile uint32_t ch3_hi_time; volatile uint32_t ch3_t_time; volatile uint32_t ch4_hi_time; volatile uint32_t ch4_t_time; volatile uint32_t ch5_hi_time; volatile uint32_t ch5_t_time; volatile uint32_t ch6_hi_time; volatile uint32_t ch6_t_time; volatile uint32_t ch7_hi_time; volatile uint32_t ch7_t_time; volatile uint32_t ch8_hi_time; volatile uint32_t ch8_t_time; volatile uint32_t ch9_hi_time; volatile uint32_t ch9_t_time; volatile uint32_t ch10_hi_time; volatile uint32_t ch10_t_time; volatile uint32_t ch11_hi_time; volatile uint32_t ch11_t_time; volatile uint32_t ch12_hi_time; volatile uint32_t ch12_t_time; volatile uint32_t max_cycle_time; }; volatile struct ring_buffer *ring_buffer; volatile struct pwm *pwm; int main (void) { unsigned int ret, i, a, s0, s1, min_s0, min_s1, max_s0, max_s1; uint32_t mem_fd; uint32_t *iram; uint32_t *ctrl; mem_fd = open("/dev/mem", O_RDWR|O_SYNC); ring_buffer = (struct ring_buffer*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCIN_PRUSS_RAM_BASE); pwm = (struct pwm*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_RAM_BASE); iram = (uint32_t*)mmap(0, 0x2000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_IRAM_BASE); ctrl = (uint32_t*)mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_CTRL_BASE); close(mem_fd); // Reset PRU 1 *ctrl = 0; usleep(5 * 1000); // Load firmware for(i = 0; i < sizeof(PRUcode); i++) { *(iram + i) = PRUcode[i]; } usleep(5 * 1000); // Start PRU 1 *ctrl = 3; i = 1; a = 0; min_s0 = 0xffffffff; min_s1 = 0xffffffff; max_s0 = 0; max_s1 = 0; pwm->ch1_t_time = 200 * 2200; pwm->ch2_t_time = 200 * 2300; pwm->ch3_t_time = 200 * 2400; pwm->ch4_t_time = 200 * 2500; pwm->ch5_t_time = 200 * 2600; pwm->ch6_t_time = 200 * 2700; pwm->ch7_t_time = 200 * 2800; pwm->ch8_t_time = 200 * 2900; pwm->ch9_t_time = 200 * 3000; pwm->ch10_t_time = 200 * 3100; pwm->ch11_t_time = 200 * 3200; pwm->ch12_t_time = 200 * 3300; pwm->enable=0xffffffff; while(1) { for(a = 0; a < NUM_RING_ENTRIES; a++) { s0 = ring_buffer->buffer[a].s0; s1 = ring_buffer->buffer[a].s1; if((s0 > max_s0) && (s0 != 1001)) {max_s0 = s0;} if((s1 > max_s1) && (s1 != 1001)) {max_s1 = s1;} if((s0 < min_s0) && (s0 != 1001)) {min_s0 = s0;} if((s1 < min_s1) && (s1 != 1001)) {min_s1 = s1;} } s0 = ring_buffer->buffer[ring_buffer->ring_tail].s0; s1 = ring_buffer->buffer[ring_buffer->ring_tail].s1; printf("max ct: %u ns head: %u tail: %3u s0: %7u s1: %7u s01: %7u jitter_s0 %u ns jitter_s1 %u ns\n", pwm->max_cycle_time * 5, ring_buffer->ring_head, ring_buffer->ring_tail, s0/200, s1/200, (s0+s1)/200, ((max_s0-min_s0) * 5), ((max_s1-min_s1) * 5)); // pwm->ch1_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch2_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch1_hi_time = 1000 * 200; // pwm->ch2_hi_time = 1500 * 200; pwm->ch3_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch4_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch5_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch6_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch7_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch8_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch9_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch10_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch11_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); pwm->ch12_hi_time = (uint32_t)((rand() % 1001 + 900) * 200); usleep(50 * 1000); if(i < 100) { min_s0 = 0xffffffff; min_s1 = 0xffffffff; max_s0 = 0; max_s1 = 0; i++; } else if(((max_s1 - min_s1) * 5) > 1001000) { i = 500; } } return 0; }