#include "Blimp.h" // performs pre-arm checks. expects to be called at 1hz. void AP_Arming_Blimp::update(void) { // perform pre-arm checks & display failures every 30 seconds static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2; pre_arm_display_counter++; bool display_fail = false; if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) { display_fail = true; pre_arm_display_counter = 0; } pre_arm_checks(display_fail); } bool AP_Arming_Blimp::pre_arm_checks(bool display_failure) { const bool passed = run_pre_arm_checks(display_failure); set_pre_arm_check(passed); return passed; } // perform pre-arm checks // return true if the checks pass successfully bool AP_Arming_Blimp::run_pre_arm_checks(bool display_failure) { // exit immediately if already armed if (blimp.motors->armed()) { return true; } // check if motor interlock and Emergency Stop aux switches are used // at the same time. This cannot be allowed. if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) && rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)) { check_failed(display_failure, "Interlock/E-Stop Conflict"); return false; } // check if motor interlock aux switch is in use // if it is, switch needs to be in disabled position to arm // otherwise exit immediately. This check to be repeated, // as state can change at any time. if (blimp.ap.using_interlock && blimp.ap.motor_interlock_switch) { check_failed(display_failure, "Motor Interlock Enabled"); } // if pre arm checks are disabled run only the mandatory checks if (checks_to_perform == 0) { return mandatory_checks(display_failure); } return fence_checks(display_failure) & parameter_checks(display_failure) & motor_checks(display_failure) & pilot_throttle_checks(display_failure) & gcs_failsafe_check(display_failure) & alt_checks(display_failure) & AP_Arming::pre_arm_checks(display_failure); } bool AP_Arming_Blimp::barometer_checks(bool display_failure) { if (!AP_Arming::barometer_checks(display_failure)) { return false; } bool ret = true; // check Baro if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_BARO)) { // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = blimp.inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (using_baro_ref) { if (fabsf(blimp.inertial_nav.get_altitude() - blimp.baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { check_failed(ARMING_CHECK_BARO, display_failure, "Altitude disparity"); ret = false; } } } return ret; } bool AP_Arming_Blimp::compass_checks(bool display_failure) { bool ret = AP_Arming::compass_checks(display_failure); if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_COMPASS)) { // check compass offsets have been set. AP_Arming only checks // this if learning is off; Blimp *always* checks. char failure_msg[50] = {}; if (!AP::compass().configured(failure_msg, ARRAY_SIZE(failure_msg))) { check_failed(ARMING_CHECK_COMPASS, display_failure, "%s", failure_msg); ret = false; } } return ret; } bool AP_Arming_Blimp::ins_checks(bool display_failure) { bool ret = AP_Arming::ins_checks(display_failure); if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) { // get ekf attitude (if bad, it's usually the gyro biases) if (!pre_arm_ekf_attitude_check()) { check_failed(ARMING_CHECK_INS, display_failure, "EKF attitude is bad"); ret = false; } } return ret; } bool AP_Arming_Blimp::board_voltage_checks(bool display_failure) { if (!AP_Arming::board_voltage_checks(display_failure)) { return false; } // check battery voltage if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_VOLTAGE)) { if (blimp.battery.has_failsafed()) { check_failed(ARMING_CHECK_VOLTAGE, display_failure, "Battery failsafe"); return false; } // call parent battery checks if (!AP_Arming::battery_checks(display_failure)) { return false; } } return true; } bool AP_Arming_Blimp::parameter_checks(bool display_failure) { // check various parameter values if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) { // failsafe parameter checks if (blimp.g.failsafe_throttle) { // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 if (blimp.channel_down->get_radio_min() <= blimp.g.failsafe_throttle_value+10 || blimp.g.failsafe_throttle_value < 910) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check FS_THR_VALUE"); return false; } } if (blimp.g.failsafe_gcs == FS_GCS_ENABLED_CONTINUE_MISSION) { // FS_GCS_ENABLE == 2 has been removed check_failed(ARMING_CHECK_PARAMETERS, display_failure, "FS_GCS_ENABLE=2 removed, see FS_OPTIONS"); } // lean angle parameter check if (blimp.aparm.angle_max < 1000 || blimp.aparm.angle_max > 8000) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ANGLE_MAX"); return false; } // pilot-speed-up parameter check if (blimp.g.pilot_speed_up <= 0) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check PILOT_SPEED_UP"); return false; } } return true; } // check motor setup was successful bool AP_Arming_Blimp::motor_checks(bool display_failure) { // check motors initialised correctly if (!blimp.motors->initialised_ok()) { check_failed(display_failure, "Check firmware or FRAME_CLASS"); return false; } // further checks enabled with parameters if (!check_enabled(ARMING_CHECK_PARAMETERS)) { return true; } return true; } bool AP_Arming_Blimp::pilot_throttle_checks(bool display_failure) { // check throttle is above failsafe throttle // this is near the bottom to allow other failures to be displayed before checking pilot throttle if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_RC)) { if (blimp.g.failsafe_throttle != FS_THR_DISABLED && blimp.channel_down->get_radio_in() < blimp.g.failsafe_throttle_value) { const char *failmsg = "Throttle below Failsafe"; check_failed(ARMING_CHECK_RC, display_failure, "%s", failmsg); return false; } } return true; } bool AP_Arming_Blimp::rc_calibration_checks(bool display_failure) { return true; } // performs pre_arm gps related checks and returns true if passed bool AP_Arming_Blimp::gps_checks(bool display_failure) { // run mandatory gps checks first if (!mandatory_gps_checks(display_failure)) { AP_Notify::flags.pre_arm_gps_check = false; return false; } // check if flight mode requires GPS bool mode_requires_gps = blimp.flightmode->requires_GPS(); // return true if GPS is not required if (!mode_requires_gps) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // return true immediately if gps check is disabled if (!(checks_to_perform == ARMING_CHECK_ALL || checks_to_perform & ARMING_CHECK_GPS)) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // warn about hdop separately - to prevent user confusion with no gps lock if (blimp.gps.get_hdop() > blimp.g.gps_hdop_good) { check_failed(ARMING_CHECK_GPS, display_failure, "High GPS HDOP"); AP_Notify::flags.pre_arm_gps_check = false; return false; } // call parent gps checks if (!AP_Arming::gps_checks(display_failure)) { AP_Notify::flags.pre_arm_gps_check = false; return false; } // if we got here all must be ok AP_Notify::flags.pre_arm_gps_check = true; return true; } // check ekf attitude is acceptable bool AP_Arming_Blimp::pre_arm_ekf_attitude_check() { // get ekf filter status nav_filter_status filt_status = blimp.inertial_nav.get_filter_status(); return filt_status.flags.attitude; } // performs mandatory gps checks. returns true if passed bool AP_Arming_Blimp::mandatory_gps_checks(bool display_failure) { // always check if inertial nav has started and is ready const AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf(); char failure_msg[50] = {}; if (!ahrs.pre_arm_check(false, failure_msg, sizeof(failure_msg))) { check_failed(display_failure, "AHRS: %s", failure_msg); return false; } // check if flight mode requires GPS bool mode_requires_gps = blimp.flightmode->requires_GPS(); if (mode_requires_gps) { if (!blimp.position_ok()) { // vehicle level position estimate checks check_failed(display_failure, "Need Position Estimate"); return false; } } else { // return true if GPS is not required return true; } // if we got here all must be ok return true; } // Check GCS failsafe bool AP_Arming_Blimp::gcs_failsafe_check(bool display_failure) { if (blimp.failsafe.gcs) { check_failed(display_failure, "GCS failsafe on"); return false; } return true; } // performs altitude checks. returns true if passed bool AP_Arming_Blimp::alt_checks(bool display_failure) { // always EKF altitude estimate if (!blimp.flightmode->has_manual_throttle() && !blimp.ekf_alt_ok()) { check_failed(display_failure, "Need Alt Estimate"); return false; } return true; } // arm_checks - perform final checks before arming // always called just before arming. Return true if ok to arm // has side-effect that logging is started bool AP_Arming_Blimp::arm_checks(AP_Arming::Method method) { return AP_Arming::arm_checks(method); } // mandatory checks that will be run if ARMING_CHECK is zero or arming forced bool AP_Arming_Blimp::mandatory_checks(bool display_failure) { // call mandatory gps checks and update notify status because regular gps checks will not run bool result = mandatory_gps_checks(display_failure); AP_Notify::flags.pre_arm_gps_check = result; // call mandatory alt check if (!alt_checks(display_failure)) { result = false; } return result; } void AP_Arming_Blimp::set_pre_arm_check(bool b) { blimp.ap.pre_arm_check = b; AP_Notify::flags.pre_arm_check = b; } bool AP_Arming_Blimp::arm(const AP_Arming::Method method, const bool do_arming_checks) { static bool in_arm_motors = false; // exit immediately if already in this function if (in_arm_motors) { return false; } in_arm_motors = true; // return true if already armed if (blimp.motors->armed()) { in_arm_motors = false; return true; } if (!AP_Arming::arm(method, do_arming_checks)) { AP_Notify::events.arming_failed = true; in_arm_motors = false; return false; } // let logger know that we're armed (it may open logs e.g.) AP::logger().set_vehicle_armed(true); // notify that arming will occur (we do this early to give plenty of warning) AP_Notify::flags.armed = true; // call notify update a few times to ensure the message gets out for (uint8_t i=0; i<=10; i++) { AP::notify().update(); } gcs().send_text(MAV_SEVERITY_INFO, "Arming motors"); //MIR kept in - usually only in SITL AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf(); blimp.initial_armed_bearing = ahrs.yaw_sensor; if (!ahrs.home_is_set()) { // Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home) ahrs.resetHeightDatum(); AP::logger().Write_Event(LogEvent::EKF_ALT_RESET); // we have reset height, so arming height is zero blimp.arming_altitude_m = 0; } else if (!ahrs.home_is_locked()) { // Reset home position if it has already been set before (but not locked) if (!blimp.set_home_to_current_location(false)) { // ignore failure } // remember the height when we armed blimp.arming_altitude_m = blimp.inertial_nav.get_altitude() * 0.01; } // enable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(true); hal.util->set_soft_armed(true); // finally actually arm the motors blimp.motors->armed(true); // log flight mode in case it was changed while vehicle was disarmed AP::logger().Write_Mode((uint8_t)blimp.control_mode, blimp.control_mode_reason); // perf monitor ignores delay due to arming AP::scheduler().perf_info.ignore_this_loop(); // flag exiting this function in_arm_motors = false; // Log time stamp of arming event blimp.arm_time_ms = millis(); // Start the arming delay blimp.ap.in_arming_delay = true; // return success return true; } // arming.disarm - disarm motors bool AP_Arming_Blimp::disarm(const AP_Arming::Method method, bool do_disarm_checks) { // return immediately if we are already disarmed if (!blimp.motors->armed()) { return true; } if (!AP_Arming::disarm(method, do_disarm_checks)) { return false; } gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors"); //MIR keeping in - usually only in SITL AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf(); // save compass offsets learned by the EKF if enabled Compass &compass = AP::compass(); if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) { for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) { Vector3f magOffsets; if (ahrs.getMagOffsets(i, magOffsets)) { compass.set_and_save_offsets(i, magOffsets); } } } // send disarm command to motors blimp.motors->armed(false); AP::logger().set_vehicle_armed(false); // disable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(false); hal.util->set_soft_armed(false); blimp.ap.in_arming_delay = false; return true; }