/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * control_hybrid.pde - init and run calls for hybrid flight mode * hybrid tries to improve upon regular loiter by mixing the pilot input with the loiter controller */ #define SPEED_0 10 #define LOITER_STAB_TIMER 300 // ST-JD : Must be higher than BRAKE_LOIT_MIX_TIMER (twice is a good deal) set it from 100 to 500, the number of centiseconds between loiter engage and getting wind_comp (once loiter stabilized) #define BRAKE_LOIT_MIX_TIMER 150 // ST-JD : Must be lower than LOITER_STAB_TIMER set it from 100 to 200, the number of centiseconds brake and loiter commands are mixed to make a smooth transition. #define LOITER_MAN_MIX_TIMER 50 // ST-JD : set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition. #define HYBRID_THROTTLE_FACTOR 1.3f // Need param? Used to define the min and max throttle from the throttle_cruise in hybrid mode. Should be between 1,1 (smooth) and 1,5 (strong) #define THROTTLE_HYBRID_MAN 0 #define THROTTLE_HYBRID_AH 1 #define THROTTLE_HYBRID_BK 3 // mission state enumeration enum hybrid_rp_mode { HYBRID_PILOT_OVERRIDE=0, HYBRID_BRAKE=1, HYBRID_LOITER=2 }; static struct { hybrid_rp_mode roll_mode : 2; // roll mode: pilot override, brake or loiter hybrid_rp_mode pitch_mode : 2; // pitch mode: pilot override, brake or loiter uint8_t loiter_engaged : 1; // 1 if loiter target has been set and loiter controller is running } hybrid; static int16_t brake_roll = 0,brake_pitch = 0; static float K_brake; static uint8_t throttle_mode=THROTTLE_HYBRID_MAN; static float wind_comp_x, wind_comp_y;// ST-JD : wind compensation vector, averaged I terms from loiter controller static int16_t wind_offset_roll,wind_offset_pitch; // ST-JD : wind offsets for pitch/roll static int16_t timeout_roll, timeout_pitch; // seconds - time allowed for the braking to complete, this timeout will be updated at half-braking static int16_t loiter_stab_timer; // loiter stabilization timer: we read pid's I terms in wind_comp only after this time from loiter start static bool timeout_roll_updated, timeout_pitch_updated; // Allow the timeout to be updated only once per braking. static int16_t brake_max_roll, brake_max_pitch; // used to detect half braking static int16_t loiter_roll,loiter_pitch; // store pitch/roll at loiter exit static float brake_loiter_mix; // varies from 0 to 1, allows a smooth loiter engage static float loiter_man_mix; // varies from 0 to 1, allow a smooth loiter to manual transition static int16_t loiter_man_timer; static int8_t update_wind_offset_timer; // update wind_offset decimator (10Hz) // hybrid_init - initialise hybrid controller static bool hybrid_init(bool ignore_checks) { /* if (GPS_ok() || ignore_checks) { // set target to current position wp_nav.init_loiter_target(); // clear pilot's feed forward for roll and pitch wp_nav.set_pilot_desired_acceleration(0, 0); // initialise altitude target to stopping point pos_control.set_target_to_stopping_point_z(); // compute K_brake K_brake=(15.0f*(float)wp_nav._brake_rate+95.0f)/100.0f; if (ap.land_complete) { // Loiter start hybrid.roll_mode = HYBRID_LOITER; hybrid.pitch_mode = HYBRID_LOITER; }else{ // Alt_hold like to avoid hard twitch if hybrid enabled in flight hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; } wind_comp_x=wind_comp_y=0; // Init wind_comp (ef). For now, resetted each time hybrid is switched on wind_offset_roll=0; // Init offset angles wind_offset_pitch=0; update_wind_offset_timer=0; // Init wind offset computation timer loiter_stab_timer=LOITER_STAB_TIMER; return true; }else{ return false; } */ return true; } // hybrid_exit - restore position controller static void hybrid_exit() { /* pos_control.init_I=true; // restore reset I for normal behaviour */ } // hybrid_run - runs the hybrid controller // should be called at 100hz or more static void hybrid_run() { /* float target_yaw_rate = 0; float target_climb_rate = 0; const Vector3f& vel = inertial_nav.get_velocity(); float vel_fw, vel_right; int16_t target_roll, target_pitch; int16_t pilot_throttle_scaled=0; // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed || !inertial_nav.position_ok()) { wp_nav.init_loiter_target(); attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); return; } // process pilot inputs if (!failsafe.radio) { // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); // get pilot desired climb rate (for alt-hold mode and take-off) target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); // check for pilot requested take-off if (ap.land_complete && target_climb_rate > 0) { // indicate we are taking off set_land_complete(false); // clear i term when we're taking off set_throttle_takeoff(); } } // if landed initialise loiter targets, set throttle to zero and exit if (ap.land_complete) { wp_nav.init_loiter_target(); attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); return; }else{ // convert pilot input to lean angles get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch); // calculate earth-frame velocities vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw(); vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw(); // get roll stick input if (target_roll != 0) { // roll stick input detected set roll mode to pilot override hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; // Set stab roll mode } else { // stick released from stab and copter horizontal (at wind comp) => transition mode if ((hybrid.roll_mode == HYBRID_PILOT_OVERRIDE) && (abs(brake_roll) < 2*wp_nav._brake_rate)) { hybrid.roll_mode = HYBRID_BRAKE; // Set brake roll mode brake_roll = 0; // this avoid false brake_timeout computing timeout_roll = 600; // seconds*0.01 - time allowed for the braking to complete, updated at half-braking timeout_roll_updated = false; // Allow the timeout to be updated only once brake_max_roll = 0; // used to detect half braking } else { // manage brake-to-loiter transition // brake timeout if (timeout_roll > 0) { timeout_roll--; } // Changed loiter engage : not once speed_0 reached but after a little delay that let the copter stabilize if it remains some rate. (maybe compare omega.x/y rather) if ((fabs(vel_right) < SPEED_0) && (timeout_roll>50)) { timeout_roll = 50; // let 0.5s between brake reaches speed_0 and loiter engage } if ((hybrid.roll_mode == HYBRID_BRAKE) && (timeout_roll==0)){ //stick released and transition finished (speed 0) or brake timeout => loiter mode hybrid.roll_mode = HYBRID_LOITER; // Set loiter roll mode } } } // get pitch stick input if (target_pitch != 0) { // pitch stick input detected set pitch mode to pilot override hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; // Set stab pitch mode }else{ if((hybrid.pitch_mode == HYBRID_PILOT_OVERRIDE) && (abs(brake_pitch) < 2*wp_nav._brake_rate)){ // stick released from stab and copter horizontal (at wind_comp) => transition mode hybrid.pitch_mode = HYBRID_BRAKE; // Set brake pitch mode brake_pitch = 0; // this avoid false brake_timeout computing timeout_pitch=600; // seconds*0.01 - time allowed for the braking to complete, updated at half-braking timeout_pitch_updated = false; // Allow the timeout to be updated only once brake_max_pitch=0; // used to detect half braking }else{ // manage brake-to-loiter transition // brake timeout if (timeout_pitch>0) timeout_pitch--; // Changed loiter engage : not once speed_0 reached but after a little delay that let the copter stabilize if it remains some rate. (maybe compare omega.x/y rather) if ((fabs(vel_fw)50)) { timeout_pitch = 50; // let 0.5s between brake reaches speed_0 and loiter engage } if ((hybrid.pitch_mode == HYBRID_BRAKE) && (timeout_pitch == 0)) { hybrid.pitch_mode = HYBRID_LOITER; // Set loiter pitch mode } } } // manual roll/pitch with smooth decrease filter // roll if (hybrid.roll_mode == HYBRID_PILOT_OVERRIDE) { if (((long)brake_roll*(long)target_roll>=0) && (abs(target_roll) 0){ // we use brake_roll to save mem usage and also because it will be natural transition with brake mode. // rate decrease brake_roll -= max((float)brake_roll*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate); // use the max value if we increase and because we could have a smoother manual decrease than this computed value brake_roll = max(brake_roll,target_roll); }else{ brake_roll += max(-(float)brake_roll*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate); brake_roll = min(brake_roll,target_roll); } } else { brake_roll=target_roll; } } // pitch if (hybrid.pitch_mode == HYBRID_PILOT_OVERRIDE) { if (((long)brake_pitch*(long)target_pitch>=0)&&(abs(target_pitch)0){ // we use brake_pitch to save mem usage and also because it will be natural transition with brake mode. brake_pitch-=max((float)brake_pitch*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate); //rate decrease brake_pitch=max(brake_pitch,target_pitch); // use the max value because we could have a smoother manual decrease than this computed value } else { brake_pitch += max(-(float)brake_pitch*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate); brake_pitch = min(brake_pitch,target_pitch); } } else { brake_pitch=target_pitch; } } // braking update: roll if (hybrid.roll_mode >= HYBRID_BRAKE) { // Roll: allow braking update to run also during loiter if (vel_right >= 0) { // negative roll = go left, positive roll = go right brake_roll = max(brake_roll-wp_nav._brake_rate, max((-K_brake*vel_right*(1.0f+500.0f/(vel_right+60.0f))),-wp_nav._max_braking_angle)); // centidegrees }else{ brake_roll = min(brake_roll+wp_nav._brake_rate, min((-K_brake*vel_right*(1.0f+500.0f/(-vel_right+60.0f))),wp_nav._max_braking_angle)); // centidegrees } if (abs(brake_roll) > brake_max_roll) { // detect half braking and update timeout brake_max_roll = abs(brake_roll); } else if (!timeout_roll_updated){ timeout_roll = 1+(uint16_t)(15L*(long)(abs(brake_roll))/(10L*(long)wp_nav._brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. timeout_roll_updated = true; } } // braking update: pitch if (hybrid.pitch_mode>=HYBRID_BRAKE) { // Pitch: allow braking update to run also during loiter if (vel_fw>=0) { // positive pitch = go backward, negative pitch = go forward brake_pitch = min(brake_pitch+wp_nav._brake_rate,min((K_brake*vel_fw*(1.0f+(500.0f/(vel_fw+60.0f)))),wp_nav._max_braking_angle)); // centidegrees } else { brake_pitch = max(brake_pitch-wp_nav._brake_rate,max((K_brake*vel_fw*(1.0f-(500.0f/(vel_fw-60.0f)))),-wp_nav._max_braking_angle)); // centidegrees } if (abs(brake_pitch)>brake_max_pitch){ // detect half braking and update timeout brake_max_pitch=abs(brake_pitch); } else if (!timeout_pitch_updated){ // Changes 12 by 15 to let the brake=>loiter 0.5s happens before this timeout ends timeout_pitch = 1+(int16_t)(15L*(long)(abs(brake_pitch))/(10L*(long)wp_nav._brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. timeout_pitch_updated = true; } } // loiter to manual mix if ((hybrid.pitch_mode==HYBRID_PILOT_OVERRIDE)||(hybrid.roll_mode==HYBRID_PILOT_OVERRIDE)) { if (!ap.land_complete && loiter_man_timer!=0) { loiter_man_mix = constrain_float((float)(loiter_man_timer)/(float)LOITER_MAN_MIX_TIMER, 0, 1.0);//constrain_float((float)(LOITER_MAN_MIX_TIMER-loiter_man_timer)/(float)LOITER_MAN_MIX_TIMER, 0, 1.0); loiter_man_timer--; } } // loitering/moving: if (hybrid.pitch_mode == HYBRID_LOITER && hybrid.roll_mode == HYBRID_LOITER) { // while loitering, updates average lat/lon wind offset angles from I terms if (hybrid.loiter_engaged) { if (!ap.land_complete && loiter_stab_timer!=0) { loiter_stab_timer--; } else if (max(fabs(vel.x),fabs(vel.y)) to avoid the stop_and_go effect wp_nav.init_loiter_target(); // init loiter controller and sets XY stopping point pos_control.set_target_to_stopping_point_z(); // init altitude loiter_stab_timer=LOITER_STAB_TIMER; // starts a 3 seconds timer brake_roll = 1; // required for next mode_1 smooth stick release and to avoid twitch brake_pitch = 1; // required for next mode_1 smooth stick release and to avoid twitch } } else { // transition from Loiter to Manual if (hybrid.loiter_engaged) { hybrid.loiter_engaged = false; loiter_man_timer=LOITER_MAN_MIX_TIMER; // save pitch/roll at loiter exit loiter_roll=wp_nav.get_roll(); loiter_pitch=wp_nav.get_pitch(); } if (update_wind_offset_timer==0) { // reduce update frequency of wind_offset to 10Hz // compute wind_offset_roll/pitch frame referred lon/lat_i_term and yaw rotated // acceleration to angle wind_offset_pitch = (float)fast_atan(-(wind_comp_x*ahrs.cos_yaw() + wind_comp_y*ahrs.sin_yaw())/981)*(18000/M_PI); wind_offset_roll = (float)fast_atan((-wind_comp_x*ahrs.sin_yaw() + wind_comp_y*ahrs.cos_yaw())/981)*(18000/M_PI); update_wind_offset_timer=10; } else { update_wind_offset_timer--; } } // if required, update loiter controller if(hybrid.loiter_engaged) { wp_nav.update_loiter(); } // select output to stabilize controllers switch (hybrid.roll_mode) { // To-Do: try to mix loiter->manual using brake_loiter_mix variable as we are doing on loiter engage case HYBRID_PILOT_OVERRIDE: // Loiter-Manual mix at loiter exit target_roll = loiter_man_mix*(float)loiter_roll+(1.0f-loiter_man_mix)*(float)(brake_roll+wind_offset_roll); break; case HYBRID_BRAKE: target_roll = brake_roll + wind_offset_roll; break; case HYBRID_LOITER: if (hybrid.loiter_engaged) { // if nav_hybrid enabled... // Brake_Loiter mix at loiter engage target_roll = brake_loiter_mix*(float)wp_nav.get_roll()+(1.0f-brake_loiter_mix)*(float)(brake_roll+wind_offset_roll); }else { target_roll = brake_roll + wind_offset_roll; } break; } switch (hybrid.pitch_mode){ case HYBRID_PILOT_OVERRIDE: //Loiter-Manual mix at loiter exit target_pitch = loiter_man_mix*(float)loiter_pitch+(1.0f-loiter_man_mix)*(float)(brake_pitch+wind_offset_pitch); break; case HYBRID_BRAKE: target_pitch = brake_pitch+wind_offset_pitch; break; case HYBRID_LOITER: if(hybrid.loiter_engaged) { // if nav_hybrid enabled... // Brake_Loiter mix at loiter engage target_pitch = brake_loiter_mix*(float)wp_nav.get_pitch()+(1.0f-brake_loiter_mix)*(float)(brake_pitch+wind_offset_pitch); } else { target_pitch = brake_pitch+wind_offset_pitch; } break; } // constrain target pitch/roll angles target_roll=constrain_int16(target_roll,-aparm.angle_max,aparm.angle_max); target_pitch=constrain_int16(target_pitch,-aparm.angle_max,aparm.angle_max); // update attitude controller targets attitude_control.angle_ef_roll_pitch_rate_ef_yaw(target_roll, target_pitch, target_yaw_rate); // throttle control if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) { // if sonar is ok, use surface tracking target_climb_rate = get_throttle_surface_tracking(target_climb_rate, pos_control.get_alt_target(), G_Dt); } // update altitude target and call position controller pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt); pos_control.update_z_controller(); } */ }