// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ #if CLI_ENABLED == ENABLED // Functions called from the top-level menu static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); // This is the help function static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Commands:\n" " logs\n" " setup\n" " test\n" " reboot\n" "\n")); return(0); } // Command/function table for the top-level menu. const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", process_logs}, {"setup", setup_mode}, {"test", test_mode}, {"reboot", reboot_board}, {"help", main_menu_help}, }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits static void run_cli(AP_HAL::UARTDriver *port) { cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); // disable main_loop failsafe failsafe_disable(); // cut the engines if(motors.armed()) { motors.armed(false); motors.output(); } while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void init_ardupilot() { if (!hal.gpio->usb_connected()) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later delay(1000); } // Console serial port // // The console port buffers are defined to be sufficiently large to support // the MAVLink protocol efficiently // #if HIL_MODE != HIL_MODE_DISABLED // we need more memory for HIL, as we get a much higher packet rate hal.uartA->begin(SERIAL0_BAUD, 256, 256); #else // use a bit less for non-HIL operation hal.uartA->begin(SERIAL0_BAUD, 128, 128); #endif // GPS serial port. // #if GPS_PROTOCOL != GPS_PROTOCOL_IMU // standard gps running. Note that we need a 256 byte buffer for some // GPS types (eg. UBLOX) hal.uartB->begin(38400, 256, 16); #endif cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE "\n\nFree RAM: %u\n"), memcheck_available_memory()); // // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) // report_version(); relay.init(); #if COPTER_LEDS == ENABLED copter_leds_init(); #endif // load parameters from EEPROM load_parameters(); #if HIL_MODE != HIL_MODE_ATTITUDE barometer.init(); #endif // init the GCS gcs0.init(hal.uartA); // Register the mavlink service callback. This will run // anytime there are more than 5ms remaining in a call to // hal.scheduler->delay. hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. ap_system.usb_connected = true; check_usb_mux(); #if CONFIG_HAL_BOARD != HAL_BOARD_APM2 // we have a 2nd serial port for telemetry on all boards except // APM2. We actually do have one on APM2 but it isn't necessary as // a MUX is used hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); gcs3.init(hal.uartC); #endif // identify ourselves correctly with the ground station mavlink_system.sysid = g.sysid_this_mav; mavlink_system.type = 2; //MAV_QUADROTOR; #if LOGGING_ENABLED == ENABLED DataFlash.Init(); if (!DataFlash.CardInserted()) { gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted")); g.log_bitmask.set(0); } else if (DataFlash.NeedErase()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); do_erase_logs(); gcs0.reset_cli_timeout(); } #endif #if FRAME_CONFIG == HELI_FRAME motors.servo_manual = false; motors.init_swash(); // heli initialisation #endif init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up motors and output to escs /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check, 1000); #if HIL_MODE != HIL_MODE_ATTITUDE #if CONFIG_ADC == ENABLED // begin filtering the ADC Gyros adc.Init(); // APM ADC library initialization #endif // CONFIG_ADC #endif // HIL_MODE // Do GPS init g_gps = &g_gps_driver; // GPS Initialization g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_1G); if(g.compass_enabled) init_compass(); // init the optical flow sensor if(g.optflow_enabled) { init_optflow(); } // initialise inertial nav inertial_nav.init(); #ifdef USERHOOK_INIT USERHOOK_INIT #endif #if CLI_ENABLED == ENABLED const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); cliSerial->println_P(msg); if (gcs3.initialised) { hal.uartC->println_P(msg); } #endif // CLI_ENABLED #if HIL_MODE != HIL_MODE_DISABLED while (!barometer.healthy) { // the barometer becomes healthy when we get the first // HIL_STATE message gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message")); delay(1000); } #endif #if HIL_MODE != HIL_MODE_ATTITUDE // read Baro pressure at ground //----------------------------- init_barometer(); #endif // initialise sonar #if CONFIG_SONAR == ENABLED init_sonar(); #endif #if FRAME_CONFIG == HELI_FRAME // initialise controller filters init_rate_controllers(); #endif // HELI_FRAME // initialize commands // ------------------- init_commands(); // initialise the flight mode and aux switch // --------------------------- reset_control_switch(); init_aux_switches(); startup_ground(); #if LOGGING_ENABLED == ENABLED Log_Write_Startup(); #endif cliSerial->print_P(PSTR("\nReady to FLY ")); } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** static void startup_ground(void) { gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START")); // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); // Warm up and read Gyro offsets // ----------------------------- ins.init(AP_InertialSensor::COLD_START, ins_sample_rate); #if CLI_ENABLED == ENABLED report_ins(); #endif // setup fast AHRS gains to get right attitude ahrs.set_fast_gains(true); // set landed flag set_land_complete(true); } // returns true if the GPS is ok and home position is set static bool GPS_ok() { if (g_gps != NULL && ap.home_is_set && g_gps->status() == GPS::GPS_OK_FIX_3D) { return true; }else{ return false; } } // returns true or false whether mode requires GPS static bool mode_requires_GPS(uint8_t mode) { switch(mode) { case AUTO: case GUIDED: case LOITER: case RTL: case CIRCLE: case POSITION: return true; default: return false; } return false; } // manual_flight_mode - returns true if flight mode is completely manual (i.e. roll, pitch and yaw controlled by pilot) static bool manual_flight_mode(uint8_t mode) { switch(mode) { case ACRO: case STABILIZE: case TOY_A: case TOY_M: case SPORT: return true; default: return false; } return false; } // set_mode - change flight mode and perform any necessary initialisation // returns true if mode was succesfully set // STABILIZE, ACRO, SPORT and LAND can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately static bool set_mode(uint8_t mode) { // boolean to record if flight mode could be set bool success = false; bool ignore_checks = !motors.armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform switch(mode) { case ACRO: success = true; set_yaw_mode(ACRO_YAW); set_roll_pitch_mode(ACRO_RP); set_throttle_mode(ACRO_THR); set_nav_mode(NAV_NONE); break; case STABILIZE: success = true; set_yaw_mode(YAW_HOLD); set_roll_pitch_mode(ROLL_PITCH_STABLE); set_throttle_mode(THROTTLE_MANUAL_TILT_COMPENSATED); set_nav_mode(NAV_NONE); break; case ALT_HOLD: success = true; set_yaw_mode(ALT_HOLD_YAW); set_roll_pitch_mode(ALT_HOLD_RP); set_throttle_mode(ALT_HOLD_THR); set_nav_mode(NAV_NONE); break; case AUTO: // check we have a GPS and at least one mission command (note the home position is always command 0) if ((GPS_ok() && g.command_total > 1) || ignore_checks) { success = true; // roll-pitch, throttle and yaw modes will all be set by the first nav command init_commands(); // clear the command queues. will be reloaded when "run_autopilot" calls "update_commands" function } break; case CIRCLE: if (GPS_ok() || ignore_checks) { success = true; set_roll_pitch_mode(CIRCLE_RP); set_throttle_mode(CIRCLE_THR); set_nav_mode(CIRCLE_NAV); set_yaw_mode(CIRCLE_YAW); } break; case LOITER: if (GPS_ok() || ignore_checks) { success = true; set_yaw_mode(LOITER_YAW); set_roll_pitch_mode(LOITER_RP); set_throttle_mode(LOITER_THR); set_nav_mode(LOITER_NAV); } break; case POSITION: if (GPS_ok() || ignore_checks) { success = true; set_yaw_mode(POSITION_YAW); set_roll_pitch_mode(POSITION_RP); set_throttle_mode(POSITION_THR); set_nav_mode(POSITION_NAV); } break; case GUIDED: if (GPS_ok() || ignore_checks) { success = true; set_yaw_mode(get_wp_yaw_mode(false)); set_roll_pitch_mode(GUIDED_RP); set_throttle_mode(GUIDED_THR); set_nav_mode(GUIDED_NAV); } break; case LAND: success = true; do_land(NULL); // land at current location break; case RTL: if (GPS_ok() || ignore_checks) { success = true; do_RTL(); } break; case OF_LOITER: if (g.optflow_enabled || ignore_checks) { success = true; set_yaw_mode(OF_LOITER_YAW); set_roll_pitch_mode(OF_LOITER_RP); set_throttle_mode(OF_LOITER_THR); set_nav_mode(OF_LOITER_NAV); } break; // THOR // These are the flight modes for Toy mode // See the defines for the enumerated values case TOY_A: success = true; set_yaw_mode(YAW_TOY); set_roll_pitch_mode(ROLL_PITCH_TOY); set_throttle_mode(THROTTLE_AUTO); set_nav_mode(NAV_NONE); // save throttle for fast exit of Alt hold saved_toy_throttle = g.rc_3.control_in; break; case TOY_M: success = true; set_yaw_mode(YAW_TOY); set_roll_pitch_mode(ROLL_PITCH_TOY); set_nav_mode(NAV_NONE); set_throttle_mode(THROTTLE_HOLD); break; case SPORT: success = true; set_yaw_mode(SPORT_YAW); set_roll_pitch_mode(SPORT_RP); set_throttle_mode(SPORT_THR); set_nav_mode(NAV_NONE); // reset acro angle targets to current attitude acro_roll = ahrs.roll_sensor; acro_pitch = ahrs.pitch_sensor; nav_yaw = ahrs.yaw_sensor; break; default: success = false; break; } // update flight mode if (success) { control_mode = mode; Log_Write_Mode(control_mode); }else{ // Log error that we failed to enter desired flight mode Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode); } // return success or failure return success; } static void init_simple_bearing() { initial_simple_bearing = ahrs.yaw_sensor; if (g.log_bitmask != 0) { Log_Write_Data(DATA_INIT_SIMPLE_BEARING, initial_simple_bearing); } } // update_auto_armed - update status of auto_armed flag static void update_auto_armed() { // disarm checks if(ap.auto_armed){ // if motors are disarmed, auto_armed should also be false if(!motors.armed()) { set_auto_armed(false); return; } // if in stabilize or acro flight mode and throttle is zero, auto-armed should become false if(manual_flight_mode(control_mode) && g.rc_3.control_in == 0 && !failsafe.radio) { set_auto_armed(false); } }else{ // arm checks // if motors are armed and throttle is above zero auto_armed should be true if(motors.armed() && g.rc_3.control_in != 0) { set_auto_armed(true); } } } /* * map from a 8 bit EEPROM baud rate to a real baud rate */ static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) { switch (rate) { case 1: return 1200; case 2: return 2400; case 4: return 4800; case 9: return 9600; case 19: return 19200; case 38: return 38400; case 57: return 57600; case 111: return 111100; case 115: return 115200; } //cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD")); return default_baud; } static void check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == ap_system.usb_connected) { return; } // the user has switched to/from the telemetry port ap_system.usb_connected = usb_check; #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 // the APM2 has a MUX setup where the first serial port switches // between USB and a TTL serial connection. When on USB we use // SERIAL0_BAUD, but when connected as a TTL serial port we run it // at SERIAL3_BAUD. if (ap_system.usb_connected) { hal.uartA->begin(SERIAL0_BAUD); } else { hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); } #endif } /* * Read Vcc vs 1.1v internal reference */ uint16_t board_voltage(void) { return board_vcc_analog_source->voltage_latest() * 1000; } // // print_flight_mode - prints flight mode to serial port. // static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case STABILIZE: port->print_P(PSTR("STABILIZE")); break; case ACRO: port->print_P(PSTR("ACRO")); break; case ALT_HOLD: port->print_P(PSTR("ALT_HOLD")); break; case AUTO: port->print_P(PSTR("AUTO")); break; case GUIDED: port->print_P(PSTR("GUIDED")); break; case LOITER: port->print_P(PSTR("LOITER")); break; case RTL: port->print_P(PSTR("RTL")); break; case CIRCLE: port->print_P(PSTR("CIRCLE")); break; case POSITION: port->print_P(PSTR("POSITION")); break; case LAND: port->print_P(PSTR("LAND")); break; case OF_LOITER: port->print_P(PSTR("OF_LOITER")); break; case TOY_M: port->print_P(PSTR("TOY_M")); break; case TOY_A: port->print_P(PSTR("TOY_A")); break; case SPORT: port->print_P(PSTR("SPORT")); break; default: port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); break; } }