/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "AP_InertialSensor_PX4.h" const extern AP_HAL::HAL& hal; #include #include #include #include #include #include #include #include uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate ) { uint16_t rate_hz; int fd; switch (sample_rate) { case RATE_50HZ: rate_hz = 50; break; case RATE_100HZ: rate_hz = 100; break; case RATE_200HZ: default: rate_hz = 200; break; } // init accelerometers fd = open(ACCEL_DEVICE_PATH, 0); if (fd < 0) { hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH); } /* set the accel internal sampling rate */ ioctl(fd, ACCELIOCSSAMPLERATE, rate_hz); /* set the driver poll rate */ ioctl(fd, SENSORIOCSPOLLRATE, rate_hz); close(fd); _accel_sub = orb_subscribe(ORB_ID(sensor_accel)); // init gyros fd = open(GYRO_DEVICE_PATH, 0); if (fd < 0) { hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH); } /* set the gyro internal sampling rate */ ioctl(fd, GYROIOCSSAMPLERATE, rate_hz); /* set the driver poll rate */ ioctl(fd, SENSORIOCSPOLLRATE, rate_hz); close(fd); _gyro_sub = orb_subscribe(ORB_ID(sensor_gyro)); return AP_PRODUCT_ID_PX4; } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_PX4::update(void) { while (num_samples_available() == 0) { hal.scheduler->delay_microseconds(1); } uint32_t now = hal.scheduler->micros(); _delta_time_usec = now - _last_update_usec; _last_update_usec = now; Vector3f accel_scale = _accel_scale.get(); _accel.x = accel_scale.x * _raw_sensors.accelerometer_m_s2[0] / _raw_sensors.accelerometer_counter; _accel.y = - accel_scale.y * _raw_sensors.accelerometer_m_s2[1] / _raw_sensors.accelerometer_counter; _accel.z = - accel_scale.z * _raw_sensors.accelerometer_m_s2[2] / _raw_sensors.accelerometer_counter; _accel -= _accel_offset; _gyro.x = _raw_sensors.gyro_rad_s[0] / _raw_sensors.gyro_counter; _gyro.y = - _raw_sensors.gyro_rad_s[1] / _raw_sensors.gyro_counter; _gyro.z = - _raw_sensors.gyro_rad_s[2] / _raw_sensors.gyro_counter; _gyro -= _gyro_offset; memset(&_raw_sensors, 0, sizeof(_raw_sensors)); return true; } bool AP_InertialSensor_PX4::new_data_available(void) { return num_samples_available() > 0; } float AP_InertialSensor_PX4::temperature(void) { return 0.0; } uint32_t AP_InertialSensor_PX4::get_delta_time_micros(void) { return _delta_time_usec; } uint32_t AP_InertialSensor_PX4::get_last_sample_time_micros(void) { return _last_update_usec; } float AP_InertialSensor_PX4::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } uint16_t AP_InertialSensor_PX4::num_samples_available(void) { bool accel_updated=false; bool gyro_updated =false; orb_check(_accel_sub, &accel_updated); if (accel_updated) { struct accel_report accel_report; orb_copy(ORB_ID(sensor_accel), _accel_sub, &accel_report); _raw_sensors.accelerometer_m_s2[0] += accel_report.x; _raw_sensors.accelerometer_m_s2[1] += accel_report.y; _raw_sensors.accelerometer_m_s2[2] += accel_report.z; _raw_sensors.accelerometer_raw[0] = accel_report.x_raw; _raw_sensors.accelerometer_raw[1] = accel_report.y_raw; _raw_sensors.accelerometer_raw[2] = accel_report.z_raw; _raw_sensors.accelerometer_counter++; } orb_check(_gyro_sub, &gyro_updated); if (gyro_updated) { struct gyro_report gyro_report; orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &gyro_report); _raw_sensors.gyro_rad_s[0] += gyro_report.x; _raw_sensors.gyro_rad_s[1] += gyro_report.y; _raw_sensors.gyro_rad_s[2] += gyro_report.z; _raw_sensors.gyro_raw[0] = gyro_report.x_raw; _raw_sensors.gyro_raw[1] = gyro_report.y_raw; _raw_sensors.gyro_raw[2] = gyro_report.z_raw; _raw_sensors.gyro_counter++; } return min(_raw_sensors.accelerometer_counter, _raw_sensors.gyro_counter); } #endif // CONFIG_HAL_BOARD