/* Common GCS MAVLink functions for all vehicle types This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include "GCS.h" #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #include #include #include #include #endif #if HAL_RCINPUT_WITH_AP_RADIO #include #include #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif extern const AP_HAL::HAL& hal; uint32_t GCS_MAVLINK::last_radio_status_remrssi_ms; uint8_t GCS_MAVLINK::mavlink_active = 0; uint8_t GCS_MAVLINK::chan_is_streaming = 0; uint32_t GCS_MAVLINK::reserve_param_space_start_ms; GCS *GCS::_singleton = nullptr; GCS_MAVLINK::GCS_MAVLINK() { AP_Param::setup_object_defaults(this, var_info); } void GCS_MAVLINK::init(AP_HAL::UARTDriver *port, mavlink_channel_t mav_chan) { if (!valid_channel(mav_chan)) { return; } _port = port; chan = mav_chan; mavlink_comm_port[chan] = _port; _queued_parameter = nullptr; snprintf(_perf_packet_name, sizeof(_perf_packet_name), "GCS_Packet_%u", chan); _perf_packet = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_packet_name); snprintf(_perf_update_name, sizeof(_perf_update_name), "GCS_Update_%u", chan); _perf_update = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_update_name); initialised = true; } /* setup a UART, handling begin() and init() */ void GCS_MAVLINK::setup_uart(const AP_SerialManager& serial_manager, AP_SerialManager::SerialProtocol protocol, uint8_t instance) { serialmanager_p = &serial_manager; // search for serial port AP_HAL::UARTDriver *uart; uart = serial_manager.find_serial(protocol, instance); if (uart == nullptr) { // return immediately if not found return; } // get associated mavlink channel mavlink_channel_t mav_chan; if (!serial_manager.get_mavlink_channel(protocol, instance, mav_chan)) { // return immediately in unlikely case mavlink channel cannot be found return; } /* Now try to cope with SiK radios that may be stuck in bootloader mode because CTS was held while powering on. This tells the bootloader to wait for a firmware. It affects any SiK radio with CTS connected that is externally powered. To cope we send 0x30 0x20 at 115200 on startup, which tells the bootloader to reset and boot normally */ uart->begin(115200); AP_HAL::UARTDriver::flow_control old_flow_control = uart->get_flow_control(); uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); for (uint8_t i=0; i<3; i++) { hal.scheduler->delay(1); uart->write(0x30); uart->write(0x20); } // since tcdrain() and TCSADRAIN may not be implemented... hal.scheduler->delay(1); uart->set_flow_control(old_flow_control); // now change back to desired baudrate uart->begin(serial_manager.find_baudrate(protocol, instance)); // and init the gcs instance init(uart, mav_chan); AP_SerialManager::SerialProtocol mavlink_protocol = serialmanager_p->get_mavlink_protocol(mav_chan); mavlink_status_t *status = mavlink_get_channel_status(chan); if (status == nullptr) { return; } if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2) { // load signing key load_signing_key(); if (status->signing == nullptr) { // if signing is off start by sending MAVLink1. status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } // announce that we are MAVLink2 capable hal.util->set_capabilities(MAV_PROTOCOL_CAPABILITY_MAVLINK2); } else if (status) { // user has asked to only send MAVLink1 status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } if (chan == MAVLINK_COMM_0) { // Always start with MAVLink1 on first port for now, to allow for recovery // after experiments with MAVLink2 status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } } /** * @brief Send the next pending waypoint, called from deferred message * handling code */ void GCS_MAVLINK::queued_waypoint_send() { if (initialised && waypoint_receiving && waypoint_request_i <= waypoint_request_last) { mavlink_msg_mission_request_send( chan, waypoint_dest_sysid, waypoint_dest_compid, waypoint_request_i, MAV_MISSION_TYPE_MISSION); } } void GCS_MAVLINK::send_meminfo(void) { unsigned __brkval = 0; uint32_t memory = hal.util->available_memory(); mavlink_msg_meminfo_send(chan, __brkval, MIN(memory, 0xFFFFU), memory); } // report power supply status void GCS_MAVLINK::send_power_status(void) { mavlink_msg_power_status_send(chan, hal.analogin->board_voltage() * 1000, hal.analogin->servorail_voltage() * 1000, hal.analogin->power_status_flags()); } void GCS_MAVLINK::send_battery_status(const AP_BattMonitor &battery, const uint8_t instance) const { // catch the battery backend not supporting the required number of cells static_assert(sizeof(AP_BattMonitor::cells) >= (sizeof(uint16_t) * MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN), "Not enough battery cells for the MAVLink message"); float temp; bool got_temperature = battery.get_temperature(temp, instance); // ensure we always send a voltage estimate to the GCS, because not all battery monitors monitor individual cells // as a work around for this we create a set of fake cells to be used if the backend doesn't provide direct monitoring // the GCS can then recover the pack voltage by summing all non ignored cell values. Because this is looped we can // report a pack up to 655.34 V with this method AP_BattMonitor::cells fake_cells; if (!battery.has_cell_voltages(instance)) { float voltage = battery.voltage(instance) * 1e3f; for (uint8_t i = 0; i < MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN; i++) { if (voltage < 0.001f) { // too small to send to the GCS, set it to the no cell value fake_cells.cells[i] = UINT16_MAX; } else { fake_cells.cells[i] = MIN(voltage, 65534.0f); // Can't send more then UINT16_MAX - 1 in a cell voltage -= 65534.0f; } } } mavlink_msg_battery_status_send(chan, instance, // id MAV_BATTERY_FUNCTION_UNKNOWN, // function MAV_BATTERY_TYPE_UNKNOWN, // type got_temperature ? ((int16_t) (temp * 100)) : INT16_MAX, // temperature. INT16_MAX if unknown battery.has_cell_voltages(instance) ? battery.get_cell_voltages(instance).cells : fake_cells.cells, // cell voltages battery.has_current(instance) ? battery.current_amps(instance) * 100 : -1, // current in centiampere battery.has_current(instance) ? battery.consumed_mah(instance) : -1, // total consumed current in milliampere.hour battery.has_consumed_energy(instance) ? battery.consumed_wh(instance) * 36 : -1, // consumed energy in hJ (hecto-Joules) battery.capacity_remaining_pct(instance), 0, // time remaining, seconds (not provided) MAV_BATTERY_CHARGE_STATE_UNDEFINED); } // returns true if all battery instances were reported bool GCS_MAVLINK::send_battery_status() const { const AP_BattMonitor &battery = AP::battery(); for(uint8_t i = 0; i < battery.num_instances(); i++) { CHECK_PAYLOAD_SIZE(BATTERY_STATUS); send_battery_status(battery, i); } return true; } void GCS_MAVLINK::send_distance_sensor(const AP_RangeFinder_Backend *sensor, const uint8_t instance) const { if (!sensor->has_data()) { return; } mavlink_msg_distance_sensor_send( chan, AP_HAL::millis(), // time since system boot TODO: take time of measurement sensor->min_distance_cm(), // minimum distance the sensor can measure in centimeters sensor->max_distance_cm(), // maximum distance the sensor can measure in centimeters sensor->distance_cm(), // current distance reading sensor->get_mav_distance_sensor_type(), // type from MAV_DISTANCE_SENSOR enum instance, // onboard ID of the sensor == instance sensor->orientation(), // direction the sensor faces from MAV_SENSOR_ORIENTATION enum 0); // Measurement covariance in centimeters, 0 for unknown / invalid readings } bool GCS_MAVLINK::send_distance_sensor() const { RangeFinder *rangefinder = RangeFinder::get_singleton(); if (rangefinder == nullptr) { return true; // this is wrong, but pretend we sent data and don't requeue } // if we have a proximity backend that utilizes rangefinders cull sending them here, // and allow the later proximity code to manage them bool filter_possible_proximity_sensors = false; AP_Proximity *proximity = AP_Proximity::get_singleton(); if (proximity != nullptr) { for (uint8_t i = 0; i < proximity->num_sensors(); i++) { if (proximity->get_type(i) == AP_Proximity::Proximity_Type_RangeFinder) { filter_possible_proximity_sensors = true; } } } for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) { CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR); AP_RangeFinder_Backend *sensor = rangefinder->get_backend(i); if (sensor == nullptr) { continue; } enum Rotation orient = sensor->orientation(); if (!filter_possible_proximity_sensors || (orient > ROTATION_YAW_315 && orient != ROTATION_PITCH_90)) { send_distance_sensor(sensor, i); } } return true; } void GCS_MAVLINK::send_rangefinder_downward() const { RangeFinder *rangefinder = RangeFinder::get_singleton(); if (rangefinder == nullptr) { return; } AP_RangeFinder_Backend *s = rangefinder->find_instance(ROTATION_PITCH_270); if (s == nullptr) { return; } mavlink_msg_rangefinder_send( chan, s->distance_cm() * 0.01f, s->voltage_mv() * 0.001f); } bool GCS_MAVLINK::send_proximity() const { AP_Proximity *proximity = AP_Proximity::get_singleton(); if (proximity == nullptr || proximity->get_status() == AP_Proximity::Proximity_NotConnected) { return true; // this is wrong, but pretend we sent data and don't requeue } const uint16_t dist_min = (uint16_t)(proximity->distance_min() * 100.0f); // minimum distance the sensor can measure in centimeters const uint16_t dist_max = (uint16_t)(proximity->distance_max() * 100.0f); // maximum distance the sensor can measure in centimeters // send horizontal distances AP_Proximity::Proximity_Distance_Array dist_array; if (proximity->get_horizontal_distances(dist_array)) { for (uint8_t i = 0; i < PROXIMITY_MAX_DIRECTION; i++) { CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR); mavlink_msg_distance_sensor_send( chan, AP_HAL::millis(), // time since system boot dist_min, // minimum distance the sensor can measure in centimeters dist_max, // maximum distance the sensor can measure in centimeters (uint16_t)(dist_array.distance[i] * 100.0f), // current distance reading MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum PROXIMITY_SENSOR_ID_START + i, // onboard ID of the sensor dist_array.orientation[i], // direction the sensor faces from MAV_SENSOR_ORIENTATION enum 0); // Measurement covariance in centimeters, 0 for unknown / invalid readings } } // send upward distance float dist_up; if (proximity->get_upward_distance(dist_up)) { CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR); mavlink_msg_distance_sensor_send( chan, AP_HAL::millis(), // time since system boot dist_min, // minimum distance the sensor can measure in centimeters dist_max, // maximum distance the sensor can measure in centimeters (uint16_t)(dist_up * 100.0f), // current distance reading MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum PROXIMITY_SENSOR_ID_START + PROXIMITY_MAX_DIRECTION + 1, // onboard ID of the sensor MAV_SENSOR_ROTATION_PITCH_90, // direction upwards 0); // Measurement covariance in centimeters, 0 for unknown / invalid readings } return true; } // report AHRS2 state void GCS_MAVLINK::send_ahrs2() { #if AP_AHRS_NAVEKF_AVAILABLE const AP_AHRS &ahrs = AP::ahrs(); Vector3f euler; struct Location loc {}; if (ahrs.get_secondary_attitude(euler)) { mavlink_msg_ahrs2_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng); } const AP_AHRS_NavEKF &_ahrs = reinterpret_cast(ahrs); const NavEKF2 &ekf2 = _ahrs.get_NavEKF2_const(); if (ekf2.activeCores() > 0 && HAVE_PAYLOAD_SPACE(chan, AHRS3)) { ekf2.getLLH(loc); ekf2.getEulerAngles(-1,euler); mavlink_msg_ahrs3_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng, 0, 0, 0, 0); } #endif } /* handle a MISSION_REQUEST_LIST mavlink packet */ void GCS_MAVLINK::handle_mission_request_list(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_request_list_t packet; mavlink_msg_mission_request_list_decode(msg, &packet); // reply with number of commands in the mission. The GCS will then request each command separately mavlink_msg_mission_count_send(chan,msg->sysid, msg->compid, mission.num_commands(), MAV_MISSION_TYPE_MISSION); // set variables to help handle the expected sending of commands to the GCS waypoint_receiving = false; // record that we are sending commands (i.e. not receiving) } /* handle a MISSION_REQUEST mavlink packet */ void GCS_MAVLINK::handle_mission_request(AP_Mission &mission, mavlink_message_t *msg) { AP_Mission::Mission_Command cmd; if (msg->msgid == MAVLINK_MSG_ID_MISSION_REQUEST_INT) { // decode mavlink_mission_request_int_t packet; mavlink_msg_mission_request_int_decode(msg, &packet); // retrieve mission from eeprom if (!mission.read_cmd_from_storage(packet.seq, cmd)) { goto mission_item_send_failed; } mavlink_mission_item_int_t ret_packet; memset(&ret_packet, 0, sizeof(ret_packet)); if (!AP_Mission::mission_cmd_to_mavlink_int(cmd, ret_packet)) { goto mission_item_send_failed; } // set packet's current field to 1 if this is the command being executed if (cmd.id == (uint16_t)mission.get_current_nav_cmd().index) { ret_packet.current = 1; } else { ret_packet.current = 0; } // set auto continue to 1 ret_packet.autocontinue = 1; // 1 (true), 0 (false) /* avoid the _send() function to save memory, as it avoids the stack usage of the _send() function by using the already declared ret_packet above */ ret_packet.target_system = msg->sysid; ret_packet.target_component = msg->compid; ret_packet.seq = packet.seq; ret_packet.command = cmd.id; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_MISSION_ITEM_INT, (const char *)&ret_packet, MAVLINK_MSG_ID_MISSION_ITEM_MIN_LEN, MAVLINK_MSG_ID_MISSION_ITEM_INT_LEN, MAVLINK_MSG_ID_MISSION_ITEM_INT_CRC); } else { // decode mavlink_mission_request_t packet; mavlink_msg_mission_request_decode(msg, &packet); if (packet.seq != 0 && // always allow HOME to be read packet.seq >= mission.num_commands()) { // try to educate the GCS on the actual size of the mission: mavlink_msg_mission_count_send(chan,msg->sysid, msg->compid, mission.num_commands(), MAV_MISSION_TYPE_MISSION); goto mission_item_send_failed; } // retrieve mission from eeprom if (!mission.read_cmd_from_storage(packet.seq, cmd)) { goto mission_item_send_failed; } mavlink_mission_item_t ret_packet; memset(&ret_packet, 0, sizeof(ret_packet)); if (!AP_Mission::mission_cmd_to_mavlink(cmd, ret_packet)) { goto mission_item_send_failed; } // set packet's current field to 1 if this is the command being executed if (cmd.id == (uint16_t)mission.get_current_nav_cmd().index) { ret_packet.current = 1; } else { ret_packet.current = 0; } // set auto continue to 1 ret_packet.autocontinue = 1; // 1 (true), 0 (false) /* avoid the _send() function to save memory, as it avoids the stack usage of the _send() function by using the already declared ret_packet above */ ret_packet.target_system = msg->sysid; ret_packet.target_component = msg->compid; ret_packet.seq = packet.seq; ret_packet.command = cmd.id; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_MISSION_ITEM, (const char *)&ret_packet, MAVLINK_MSG_ID_MISSION_ITEM_MIN_LEN, MAVLINK_MSG_ID_MISSION_ITEM_LEN, MAVLINK_MSG_ID_MISSION_ITEM_CRC); } return; mission_item_send_failed: // send failure message mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ERROR, MAV_MISSION_TYPE_MISSION); } /* handle a MISSION_SET_CURRENT mavlink packet */ void GCS_MAVLINK::handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_set_current_t packet; mavlink_msg_mission_set_current_decode(msg, &packet); // set current command if (mission.set_current_cmd(packet.seq)) { mavlink_msg_mission_current_send(chan, packet.seq); } } /* handle a MISSION_COUNT mavlink packet */ void GCS_MAVLINK::handle_mission_count(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_count_t packet; mavlink_msg_mission_count_decode(msg, &packet); // start waypoint receiving if (packet.count > mission.num_commands_max()) { // send NAK mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_NO_SPACE, MAV_MISSION_TYPE_MISSION); return; } // new mission arriving, truncate mission to be the same length mission.truncate(packet.count); // set variables to help handle the expected receiving of commands from the GCS waypoint_timelast_receive = AP_HAL::millis(); // set time we last received commands to now waypoint_receiving = true; // record that we expect to receive commands waypoint_request_i = 0; // reset the next expected command number to zero waypoint_request_last = packet.count; // record how many commands we expect to receive waypoint_timelast_request = 0; // set time we last requested commands to zero waypoint_dest_sysid = msg->sysid; // record system id of GCS who wants to upload the mission waypoint_dest_compid = msg->compid; // record component id of GCS who wants to upload the mission } /* handle a MISSION_CLEAR_ALL mavlink packet */ void GCS_MAVLINK::handle_mission_clear_all(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_clear_all_t packet; mavlink_msg_mission_clear_all_decode(msg, &packet); // clear all waypoints if (mission.clear()) { // send ack mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED, MAV_MISSION_TYPE_MISSION); }else{ // send nack mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ERROR, MAV_MISSION_TYPE_MISSION); } } /* handle a MISSION_WRITE_PARTIAL_LIST mavlink packet */ void GCS_MAVLINK::handle_mission_write_partial_list(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_write_partial_list_t packet; mavlink_msg_mission_write_partial_list_decode(msg, &packet); // start waypoint receiving if ((unsigned)packet.start_index > mission.num_commands() || (unsigned)packet.end_index > mission.num_commands() || packet.end_index < packet.start_index) { send_text(MAV_SEVERITY_WARNING,"Flight plan update rejected"); return; } waypoint_timelast_receive = AP_HAL::millis(); waypoint_timelast_request = 0; waypoint_receiving = true; waypoint_request_i = packet.start_index; waypoint_request_last= packet.end_index; waypoint_dest_sysid = msg->sysid; // record system id of GCS who wants to partially update the mission waypoint_dest_compid = msg->compid; // record component id of GCS who wants to partially update the mission } /* handle a GIMBAL_REPORT mavlink packet */ void GCS_MAVLINK::handle_gimbal_report(AP_Mount &mount, mavlink_message_t *msg) const { mount.handle_gimbal_report(chan, msg); } void GCS_MAVLINK::send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list) { char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1] {}; hal.util->vsnprintf((char *)text, sizeof(text)-1, fmt, arg_list); gcs().send_statustext(severity, (1< 95 && stream_slowdown > 10) { // the buffer has plenty of space, speed up a lot stream_slowdown -= 2; } else if (packet.txbuf > 90 && stream_slowdown != 0) { // the buffer has enough space, speed up a bit stream_slowdown--; } //log rssi, noise, etc if logging Performance monitoring data if (log_radio) { dataflash.Log_Write_Radio(packet); } } /* handle an incoming mission item return true if this is the last mission item, otherwise false */ bool GCS_MAVLINK::handle_mission_item(mavlink_message_t *msg, AP_Mission &mission) { MAV_MISSION_RESULT result = MAV_MISSION_ACCEPTED; struct AP_Mission::Mission_Command cmd = {}; bool mission_is_complete = false; uint16_t seq=0; uint16_t current = 0; if (msg->msgid == MAVLINK_MSG_ID_MISSION_ITEM) { mavlink_mission_item_t packet; mavlink_msg_mission_item_decode(msg, &packet); // convert mavlink packet to mission command result = AP_Mission::mavlink_to_mission_cmd(packet, cmd); if (result != MAV_MISSION_ACCEPTED) { goto mission_ack; } seq = packet.seq; current = packet.current; } else { mavlink_mission_item_int_t packet; mavlink_msg_mission_item_int_decode(msg, &packet); // convert mavlink packet to mission command result = AP_Mission::mavlink_int_to_mission_cmd(packet, cmd); if (result != MAV_MISSION_ACCEPTED) { goto mission_ack; } seq = packet.seq; current = packet.current; } if (current == 2) { // current = 2 is a flag to tell us this is a "guided mode" // waypoint and not for the mission result = (handle_guided_request(cmd) ? MAV_MISSION_ACCEPTED : MAV_MISSION_ERROR) ; // verify we received the command goto mission_ack; } if (current == 3) { //current = 3 is a flag to tell us this is a alt change only // add home alt if needed handle_change_alt_request(cmd); // verify we recevied the command result = MAV_MISSION_ACCEPTED; goto mission_ack; } // Check if receiving waypoints (mission upload expected) if (!waypoint_receiving) { result = MAV_MISSION_ERROR; goto mission_ack; } // check if this is the requested waypoint if (seq != waypoint_request_i) { result = MAV_MISSION_INVALID_SEQUENCE; goto mission_ack; } // sanity check for DO_JUMP command if (cmd.id == MAV_CMD_DO_JUMP) { if ((cmd.content.jump.target >= mission.num_commands() && cmd.content.jump.target >= waypoint_request_last) || cmd.content.jump.target == 0) { result = MAV_MISSION_ERROR; goto mission_ack; } } // if command index is within the existing list, replace the command if (seq < mission.num_commands()) { if (mission.replace_cmd(seq,cmd)) { result = MAV_MISSION_ACCEPTED; }else{ result = MAV_MISSION_ERROR; goto mission_ack; } // if command is at the end of command list, add the command } else if (seq == mission.num_commands()) { if (mission.add_cmd(cmd)) { result = MAV_MISSION_ACCEPTED; }else{ result = MAV_MISSION_ERROR; goto mission_ack; } // if beyond the end of the command list, return an error } else { result = MAV_MISSION_ERROR; goto mission_ack; } // update waypoint receiving state machine waypoint_timelast_receive = AP_HAL::millis(); waypoint_request_i++; if (waypoint_request_i >= waypoint_request_last) { mavlink_msg_mission_ack_send_buf( msg, chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED, MAV_MISSION_TYPE_MISSION); send_text(MAV_SEVERITY_INFO,"Flight plan received"); waypoint_receiving = false; mission_is_complete = true; // XXX ignores waypoint radius for individual waypoints, can // only set WP_RADIUS parameter } else { waypoint_timelast_request = AP_HAL::millis(); // if we have enough space, then send the next WP immediately if (HAVE_PAYLOAD_SPACE(chan, MISSION_ITEM)) { queued_waypoint_send(); } else { send_message(MSG_NEXT_WAYPOINT); } } return mission_is_complete; mission_ack: // we are rejecting the mission/waypoint mavlink_msg_mission_ack_send_buf( msg, chan, msg->sysid, msg->compid, result, MAV_MISSION_TYPE_MISSION); return mission_is_complete; } void GCS_MAVLINK::push_deferred_messages() { while (num_deferred_messages != 0) { if (!try_send_message(deferred_messages[next_deferred_message])) { break; } next_deferred_message++; if (next_deferred_message == ARRAY_SIZE(deferred_messages)) { next_deferred_message = 0; } num_deferred_messages--; } } void GCS_MAVLINK::retry_deferred() { push_deferred_messages(); } // send a message using mavlink, handling message queueing void GCS_MAVLINK::send_message(enum ap_message id) { uint8_t i, nextid; if (id == MSG_HEARTBEAT) { save_signing_timestamp(false); } // see if we can send the deferred messages, if any: push_deferred_messages(); // if there are no deferred messages, attempt to send straight away: if (num_deferred_messages == 0) { if (try_send_message(id)) { // yay, we sent it! return; } } // we failed to send the message this time around, so try to defer: if (num_deferred_messages == ARRAY_SIZE(deferred_messages)) { // the defer buffer is full, discard this attempt to send. // Note that the message *may* already be in the defer buffer return; } // check if this message is deferred: for (i=0, nextid = next_deferred_message; i < num_deferred_messages; i++) { if (deferred_messages[nextid] == id) { // it's already deferred return; } nextid++; if (nextid == ARRAY_SIZE(deferred_messages)) { nextid = 0; } } // not already deferred, defer it deferred_messages[nextid] = id; num_deferred_messages++; } void GCS_MAVLINK::packetReceived(const mavlink_status_t &status, mavlink_message_t &msg) { // we exclude radio packets because we historically used this to // make it possible to use the CLI over the radio if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) { mavlink_active |= (1U<<(chan-MAVLINK_COMM_0)); } if (!(status.flags & MAVLINK_STATUS_FLAG_IN_MAVLINK1) && (status.flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1) && serialmanager_p && serialmanager_p->get_mavlink_protocol(chan) == AP_SerialManager::SerialProtocol_MAVLink2) { // if we receive any MAVLink2 packets on a connection // currently sending MAVLink1 then switch to sending // MAVLink2 mavlink_status_t *cstatus = mavlink_get_channel_status(chan); if (cstatus != nullptr) { cstatus->flags &= ~MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } } if (routing.check_and_forward(chan, &msg) && accept_packet(status, msg)) { handleMessage(&msg); } } void GCS_MAVLINK::update(uint32_t max_time_us) { // receive new packets mavlink_message_t msg; mavlink_status_t status; uint32_t tstart_us = AP_HAL::micros(); uint32_t now_ms = AP_HAL::millis(); hal.util->perf_begin(_perf_update); status.packet_rx_drop_count = 0; // process received bytes uint16_t nbytes = comm_get_available(chan); for (uint16_t i=0; iread(); const uint32_t protocol_timeout = 4000; if (alternative.handler && now_ms - alternative.last_mavlink_ms > protocol_timeout) { /* we have an alternative protocol handler installed and we haven't parsed a MAVLink packet for 4 seconds. Try parsing using alternative handler */ if (alternative.handler(c, mavlink_comm_port[chan])) { alternative.last_alternate_ms = now_ms; gcs_alternative_active[chan] = true; } /* we may also try parsing as MAVLink if we haven't had a successful parse on the alternative protocol for 4s */ if (now_ms - alternative.last_alternate_ms <= protocol_timeout) { continue; } } bool parsed_packet = false; // Try to get a new message if (mavlink_parse_char(chan, c, &msg, &status)) { hal.util->perf_begin(_perf_packet); packetReceived(status, msg); hal.util->perf_end(_perf_packet); parsed_packet = true; gcs_alternative_active[chan] = false; alternative.last_mavlink_ms = now_ms; } if (parsed_packet || i % 100 == 0) { // make sure we don't spend too much time parsing mavlink messages if (AP_HAL::micros() - tstart_us > max_time_us) { break; } } } const uint32_t tnow = AP_HAL::millis(); // send a timesync message every 10 seconds; this is for data // collection purposes if (tnow - _timesync_request.last_sent_ms > _timesync_request.interval_ms) { if (HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) { send_timesync(); _timesync_request.last_sent_ms = tnow; } } if (waypoint_receiving) { const uint32_t wp_recv_time = 1000U + (stream_slowdown*20); // stop waypoint receiving if timeout if (tnow - waypoint_timelast_receive > wp_recv_time+waypoint_receive_timeout) { waypoint_receiving = false; } else if (tnow - waypoint_timelast_request > wp_recv_time) { waypoint_timelast_request = tnow; send_message(MSG_NEXT_WAYPOINT); } } hal.util->perf_end(_perf_update); } /* send the SYSTEM_TIME message */ void GCS_MAVLINK::send_system_time() { uint64_t time_unix = 0; AP::rtc().get_utc_usec(time_unix); // may fail, leaving time_unix at 0 mavlink_msg_system_time_send( chan, time_unix, AP_HAL::millis()); } /* send RC_CHANNELS messages */ void GCS_MAVLINK::send_radio_in() { AP_RSSI *rssi = AP::rssi(); uint8_t receiver_rssi = 0; if (rssi != nullptr) { receiver_rssi = rssi->read_receiver_rssi_uint8(); } uint32_t now = AP_HAL::millis(); mavlink_status_t *status = mavlink_get_channel_status(chan); uint16_t values[18] = {}; rc().get_radio_in(values, ARRAY_SIZE(values)); if (status && (status->flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1)) { // for mavlink1 send RC_CHANNELS_RAW, for compatibility with OSD implementations mavlink_msg_rc_channels_raw_send( chan, now, 0, values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], receiver_rssi); } if (!HAVE_PAYLOAD_SPACE(chan, RC_CHANNELS)) { // can't fit RC_CHANNELS return; } mavlink_msg_rc_channels_send( chan, now, RC_Channels::get_valid_channel_count(), values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15], values[16], values[17], receiver_rssi); } void GCS_MAVLINK::send_raw_imu() { const AP_InertialSensor &ins = AP::ins(); const Compass &compass = AP::compass(); const Vector3f &accel = ins.get_accel(0); const Vector3f &gyro = ins.get_gyro(0); Vector3f mag; if (compass.get_count() >= 1) { mag = compass.get_field(0); } else { mag.zero(); } mavlink_msg_raw_imu_send( chan, AP_HAL::micros(), accel.x * 1000.0f / GRAVITY_MSS, accel.y * 1000.0f / GRAVITY_MSS, accel.z * 1000.0f / GRAVITY_MSS, gyro.x * 1000.0f, gyro.y * 1000.0f, gyro.z * 1000.0f, mag.x, mag.y, mag.z); if (ins.get_gyro_count() <= 1 && ins.get_accel_count() <= 1 && compass.get_count() <= 1) { return; } if (!HAVE_PAYLOAD_SPACE(chan, SCALED_IMU2)) { return; } const Vector3f &accel2 = ins.get_accel(1); const Vector3f &gyro2 = ins.get_gyro(1); if (compass.get_count() >= 2) { mag = compass.get_field(1); } else { mag.zero(); } mavlink_msg_scaled_imu2_send( chan, AP_HAL::millis(), accel2.x * 1000.0f / GRAVITY_MSS, accel2.y * 1000.0f / GRAVITY_MSS, accel2.z * 1000.0f / GRAVITY_MSS, gyro2.x * 1000.0f, gyro2.y * 1000.0f, gyro2.z * 1000.0f, mag.x, mag.y, mag.z); if (ins.get_gyro_count() <= 2 && ins.get_accel_count() <= 2 && compass.get_count() <= 2) { return; } if (!HAVE_PAYLOAD_SPACE(chan, SCALED_IMU3)) { return; } const Vector3f &accel3 = ins.get_accel(2); const Vector3f &gyro3 = ins.get_gyro(2); if (compass.get_count() >= 3) { mag = compass.get_field(2); } else { mag.zero(); } mavlink_msg_scaled_imu3_send( chan, AP_HAL::millis(), accel3.x * 1000.0f / GRAVITY_MSS, accel3.y * 1000.0f / GRAVITY_MSS, accel3.z * 1000.0f / GRAVITY_MSS, gyro3.x * 1000.0f, gyro3.y * 1000.0f, gyro3.z * 1000.0f, mag.x, mag.y, mag.z); } // sub overrides this to send on-board temperature void GCS_MAVLINK::send_scaled_pressure3() { const AP_Baro &barometer = AP::baro(); if (barometer.num_instances() < 3) { return; } if (!HAVE_PAYLOAD_SPACE(chan, SCALED_PRESSURE3)) { return; } const float pressure = barometer.get_pressure(2); mavlink_msg_scaled_pressure3_send( chan, AP_HAL::millis(), pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(2))*0.01f, // hectopascal barometer.get_temperature(2)*100); // 0.01 degrees C } void GCS_MAVLINK::send_scaled_pressure() { uint32_t now = AP_HAL::millis(); const AP_Baro &barometer = AP::baro(); float pressure = barometer.get_pressure(0); float diff_pressure = 0; // pascal AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed != nullptr) { diff_pressure = airspeed->get_differential_pressure(); } mavlink_msg_scaled_pressure_send( chan, now, pressure*0.01f, // hectopascal diff_pressure*0.01f, // hectopascal barometer.get_temperature(0)*100); // 0.01 degrees C if (barometer.num_instances() > 1 && HAVE_PAYLOAD_SPACE(chan, SCALED_PRESSURE2)) { pressure = barometer.get_pressure(1); mavlink_msg_scaled_pressure2_send( chan, now, pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(1))*0.01f, // hectopascal barometer.get_temperature(1)*100); // 0.01 degrees C } send_scaled_pressure3(); } void GCS_MAVLINK::send_sensor_offsets() { const AP_InertialSensor &ins = AP::ins(); const Compass &compass = AP::compass(); // run this message at a much lower rate - otherwise it // pointlessly wastes quite a lot of bandwidth static uint8_t counter; if (counter++ < 10) { return; } counter = 0; const Vector3f &mag_offsets = compass.get_offsets(0); const Vector3f &accel_offsets = ins.get_accel_offsets(0); const Vector3f &gyro_offsets = ins.get_gyro_offsets(0); const AP_Baro &barometer = AP::baro(); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_pressure(), barometer.get_temperature()*100, gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } void GCS_MAVLINK::send_ahrs() { const AP_AHRS &ahrs = AP::ahrs(); const Vector3f &omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 0, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } /* send a statustext text string to specific MAVLink bitmask */ void GCS::send_statustext(MAV_SEVERITY severity, uint8_t dest_bitmask, const char *text) { if (dataflash_p != nullptr) { dataflash_p->Log_Write_Message(text); } // add statustext message to FrSky lib queue if (frsky_telemetry_p != NULL) { frsky_telemetry_p->queue_message(severity, text); } // filter destination ports to only allow active ports. statustext_t statustext{}; statustext.bitmask = (GCS_MAVLINK::active_channel_mask() | GCS_MAVLINK::streaming_channel_mask() ) & dest_bitmask; if (!statustext.bitmask) { // nowhere to send return; } statustext.msg.severity = severity; strncpy(statustext.msg.text, text, sizeof(statustext.msg.text)); WITH_SEMAPHORE(_statustext_sem); // The force push will ensure comm links do not block other comm links forever if they fail. // If we push to a full buffer then we overwrite the oldest entry, effectively removing the // block but not until the buffer fills up. _statustext_queue.push_force(statustext); // try and send immediately if possible service_statustext(); AP_Notify *notify = AP_Notify::instance(); if (notify) { notify->send_text(text); } } /* send a statustext message to specific MAVLink connections in a bitmask */ void GCS::service_statustext(void) { // create bitmask of what mavlink ports we should send this text to. // note, if sending to all ports, we only need to store the bitmask for each and the string only once. // once we send over a link, clear the port but other busy ports bit may stay allowing for faster links // to clear the bit and send quickly but slower links to still store the string. Regardless of mixed // bitrates of ports, a maximum of _status_capacity strings can be buffered. Downside // is if you have a super slow link mixed with a faster port, if there are _status_capacity // strings in the slow queue then the next item can not be queued for the faster link if (_statustext_queue.empty()) { // nothing to do return; } for (uint8_t idx=0; idx<_status_capacity; ) { statustext_t *statustext = _statustext_queue[idx]; if (statustext == nullptr) { break; } // try and send to all active mavlink ports listed in the statustext.bitmask for (uint8_t i=0; ibitmask & chan_bit) { // something is queued on a port and that's the port index we're looped at mavlink_channel_t chan_index = (mavlink_channel_t)(MAVLINK_COMM_0+i); if (HAVE_PAYLOAD_SPACE(chan_index, STATUSTEXT)) { // we have space so send then clear that channel bit on the mask mavlink_msg_statustext_send(chan_index, statustext->msg.severity, statustext->msg.text); statustext->bitmask &= ~chan_bit; } } } if (statustext->bitmask == 0) { _statustext_queue.remove(idx); } else { // move to next index idx++; } } } void GCS::send_message(enum ap_message id) { for (uint8_t i=0; i 1) { int16_t current; if (battery.has_current(1)) { current = battery.current_amps(1) * 100; // 10*mA } else { current = -1; } mavlink_msg_battery2_send(chan, battery.voltage(1)*1000, current); } } /* handle a SET_MODE MAVLink message */ void GCS_MAVLINK::handle_set_mode(mavlink_message_t* msg) { mavlink_set_mode_t packet; mavlink_msg_set_mode_decode(msg, &packet); const MAV_MODE _base_mode = (MAV_MODE)packet.base_mode; const uint32_t _custom_mode = packet.custom_mode; const MAV_RESULT result = _set_mode_common(_base_mode, _custom_mode); // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, MAVLINK_MSG_ID_SET_MODE, result); } /* code common to both SET_MODE mavlink message and command long set_mode msg */ MAV_RESULT GCS_MAVLINK::_set_mode_common(const MAV_MODE _base_mode, const uint32_t _custom_mode) { MAV_RESULT result = MAV_RESULT_UNSUPPORTED; // only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes if (_base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) { if (set_mode(_custom_mode)) { result = MAV_RESULT_ACCEPTED; } } else if (_base_mode == (MAV_MODE)MAV_MODE_FLAG_DECODE_POSITION_SAFETY) { // set the safety switch position. Must be in a command by itself if (_custom_mode == 0) { // turn safety off (pwm outputs flow to the motors) hal.rcout->force_safety_off(); result = MAV_RESULT_ACCEPTED; } else if (_custom_mode == 1) { // turn safety on (no pwm outputs to the motors) if (hal.rcout->force_safety_on()) { result = MAV_RESULT_ACCEPTED; } } } return result; } #if AP_AHRS_NAVEKF_AVAILABLE /* send OPTICAL_FLOW message */ void GCS_MAVLINK::send_opticalflow(const OpticalFlow &optflow) { // exit immediately if no optical flow sensor or not healthy if (!optflow.healthy()) { return; } // get rates from sensor const Vector2f &flowRate = optflow.flowRate(); const Vector2f &bodyRate = optflow.bodyRate(); const AP_AHRS &ahrs = AP::ahrs(); float hagl = 0; if (ahrs.have_inertial_nav()) { if (!ahrs.get_hagl(hagl)) { return; } } // populate and send message mavlink_msg_optical_flow_send( chan, AP_HAL::millis(), 0, // sensor id is zero flowRate.x, flowRate.y, bodyRate.x, bodyRate.y, optflow.quality(), hagl, // ground distance (in meters) set to zero flowRate.x, flowRate.y); } #endif /* send AUTOPILOT_VERSION packet */ void GCS_MAVLINK::send_autopilot_version() const { uint32_t flight_sw_version; uint32_t middleware_sw_version = 0; uint32_t os_sw_version = 0; uint32_t board_version = 0; char flight_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_FLIGHT_CUSTOM_VERSION_LEN]{}; char middleware_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_MIDDLEWARE_CUSTOM_VERSION_LEN]{}; char os_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_OS_CUSTOM_VERSION_LEN]{}; uint16_t vendor_id = 0; uint16_t product_id = 0; uint64_t uid = 0; uint8_t uid2[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_UID2_LEN] = {0}; const AP_FWVersion &version = AP::fwversion(); flight_sw_version = version.major << (8 * 3) | \ version.minor << (8 * 2) | \ version.patch << (8 * 1) | \ (uint32_t)(version.fw_type) << (8 * 0); if (version.fw_hash_str) { strncpy(flight_custom_version, version.fw_hash_str, sizeof(flight_custom_version) - 1); flight_custom_version[sizeof(flight_custom_version) - 1] = '\0'; } if (version.middleware_hash_str) { strncpy(middleware_custom_version, version.middleware_hash_str, sizeof(middleware_custom_version) - 1); middleware_custom_version[sizeof(middleware_custom_version) - 1] = '\0'; } if (version.os_hash_str) { strncpy(os_custom_version, version.os_hash_str, sizeof(os_custom_version) - 1); os_custom_version[sizeof(os_custom_version) - 1] = '\0'; } mavlink_msg_autopilot_version_send( chan, hal.util->get_capabilities(), flight_sw_version, middleware_sw_version, os_sw_version, board_version, (uint8_t *)flight_custom_version, (uint8_t *)middleware_custom_version, (uint8_t *)os_custom_version, vendor_id, product_id, uid, uid2 ); } /* send LOCAL_POSITION_NED message */ void GCS_MAVLINK::send_local_position() const { const AP_AHRS &ahrs = AP::ahrs(); Vector3f local_position, velocity; if (!ahrs.get_relative_position_NED_home(local_position) || !ahrs.get_velocity_NED(velocity)) { // we don't know the position and velocity return; } mavlink_msg_local_position_ned_send( chan, AP_HAL::millis(), local_position.x, local_position.y, local_position.z, velocity.x, velocity.y, velocity.z); } /* send VIBRATION message */ void GCS_MAVLINK::send_vibration() const { const AP_InertialSensor &ins = AP::ins(); Vector3f vibration = ins.get_vibration_levels(); mavlink_msg_vibration_send( chan, AP_HAL::micros64(), vibration.x, vibration.y, vibration.z, ins.get_accel_clip_count(0), ins.get_accel_clip_count(1), ins.get_accel_clip_count(2)); } void GCS_MAVLINK::send_named_float(const char *name, float value) const { char float_name[MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN+1] {}; strncpy(float_name, name, MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN); mavlink_msg_named_value_float_send(chan, AP_HAL::millis(), float_name, value); } void GCS_MAVLINK::send_home() const { if (!HAVE_PAYLOAD_SPACE(chan, HOME_POSITION)) { return; } if (!AP::ahrs().home_is_set()) { return; } Location home = AP::ahrs().get_home(); const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; mavlink_msg_home_position_send( chan, home.lat, home.lng, home.alt * 10, 0.0f, 0.0f, 0.0f, q, 0.0f, 0.0f, 0.0f, AP_HAL::micros64()); } void GCS_MAVLINK::send_ekf_origin() const { if (!HAVE_PAYLOAD_SPACE(chan, GPS_GLOBAL_ORIGIN)) { return; } Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return; } mavlink_msg_gps_global_origin_send( chan, ekf_origin.lat, ekf_origin.lng, ekf_origin.alt * 10, AP_HAL::micros64()); } /* Send MAVLink heartbeat */ void GCS_MAVLINK::send_heartbeat() const { mavlink_msg_heartbeat_send( chan, frame_type(), MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode(), custom_mode(), system_status()); } float GCS_MAVLINK::adjust_rate_for_stream_trigger(enum streams stream_num) { // send at a much lower rate while handling waypoints and // parameter sends if ((stream_num != STREAM_PARAMS) && (waypoint_receiving || _queued_parameter != nullptr)) { return 0.25f; } return 1.0f; } // are we still delaying telemetry to try to avoid Xbee bricking? bool GCS_MAVLINK::telemetry_delayed() const { uint32_t tnow = AP_HAL::millis() >> 10; if (tnow > telem_delay()) { return false; } if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } /* send SERVO_OUTPUT_RAW */ void GCS_MAVLINK::send_servo_output_raw() { uint16_t values[16] {}; if (in_hil_mode()) { for (uint8_t i=0; i<16; i++) { values[i] = SRV_Channels::srv_channel(i)->get_output_pwm(); } } else { hal.rcout->read(values, 16); } for (uint8_t i=0; i<16; i++) { if (values[i] == 65535) { values[i] = 0; } } mavlink_msg_servo_output_raw_send( chan, AP_HAL::micros(), 0, // port values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15]); } void GCS_MAVLINK::send_collision_all(const AP_Avoidance::Obstacle &threat, MAV_COLLISION_ACTION behaviour) { for (uint8_t i=0; i= MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_MSG_ID_COLLISION) { mavlink_msg_collision_send( chan, MAV_COLLISION_SRC_ADSB, threat.src_id, behaviour, threat.threat_level, threat.time_to_closest_approach, threat.closest_approach_z, threat.closest_approach_xy ); } } } } void GCS_MAVLINK::send_accelcal_vehicle_position(uint32_t position) { if (HAVE_PAYLOAD_SPACE(chan, COMMAND_LONG)) { mavlink_msg_command_long_send( chan, 0, 0, MAV_CMD_ACCELCAL_VEHICLE_POS, 0, (float) position, 0, 0, 0, 0, 0, 0); } } float GCS_MAVLINK::vfr_hud_airspeed() const { AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed != nullptr && airspeed->healthy()) { return airspeed->get_airspeed(); } // because most vehicles don't have airspeed sensors, we return a // different sort of speed estimate in the relevant field for // comparison's sake. return AP::gps().ground_speed(); } float GCS_MAVLINK::vfr_hud_climbrate() const { return -vfr_hud_velned.z; } void GCS_MAVLINK::send_vfr_hud() { AP_AHRS &ahrs = AP::ahrs(); // return values ignored; we send stale data ahrs.get_position(global_position_current_loc); ahrs.get_velocity_NED(vfr_hud_velned); mavlink_msg_vfr_hud_send( chan, vfr_hud_airspeed(), ahrs.groundspeed(), (ahrs.yaw_sensor / 100) % 360, vfr_hud_throttle(), global_position_current_loc.alt * 0.01f, // cm -> m vfr_hud_climbrate()); } void GCS_MAVLINK::zero_rc_outputs() { // Send an invalid signal to the motors to prevent spinning due to neutral (1500) pwm pulse being cut short // For that matter, send an invalid signal to all channels to prevent undesired/unexpected behavior SRV_Channels::cork(); for (int i=0; iwrite(i, 0); } SRV_Channels::push(); } void GCS_MAVLINK::disable_overrides() { #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN int px4io_fd = open("/dev/px4io", 0); if (px4io_fd < 0) { return; } // disable OVERRIDES so we don't run the mixer while // rebooting if (ioctl(px4io_fd, PWM_SERVO_SET_OVERRIDE_OK, 0) != 0) { hal.console->printf("SET_OVERRIDE_OK failed\n"); } if (ioctl(px4io_fd, PWM_SERVO_SET_OVERRIDE_IMMEDIATE, 0) != 0) { hal.console->printf("SET_OVERRIDE_IMMEDIATE failed\n"); } close(px4io_fd); #endif } /* handle a MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN command Optionally disable PX4IO overrides. This is done for quadplanes to prevent the mixer running while rebooting which can start the VTOL motors. That can be dangerous when a preflight reboot is done with the pilot close to the aircraft and can also damage the aircraft */ MAV_RESULT GCS_MAVLINK::handle_preflight_reboot(const mavlink_command_long_t &packet) { if (!(is_equal(packet.param1, 1.0f) || is_equal(packet.param1, 3.0f))) { // param1 must be 1 or 3 - 1 being reboot, 3 being reboot-to-bootloader return MAV_RESULT_UNSUPPORTED; } if (should_disable_overrides_on_reboot()) { // disable overrides while rebooting disable_overrides(); } if (should_zero_rc_outputs_on_reboot()) { zero_rc_outputs(); } // send ack before we reboot mavlink_msg_command_ack_send(chan, packet.command, MAV_RESULT_ACCEPTED); // Notify might want to blink some LEDs: AP_Notify *notify = AP_Notify::instance(); if (notify) { AP_Notify::flags.firmware_update = 1; notify->update(); } // force safety on hal.rcout->force_safety_on(); hal.rcout->force_safety_no_wait(); // flush pending parameter writes AP_Param::flush(); hal.scheduler->delay(200); // when packet.param1 == 3 we reboot to hold in bootloader const bool hold_in_bootloader = is_equal(packet.param1, 3.0f); hal.scheduler->reboot(hold_in_bootloader); return MAV_RESULT_FAILED; } /* handle a flight termination request */ MAV_RESULT GCS_MAVLINK::handle_flight_termination(const mavlink_command_long_t &packet) { AP_AdvancedFailsafe *failsafe = get_advanced_failsafe(); if (failsafe == nullptr) { return MAV_RESULT_UNSUPPORTED; } bool should_terminate = packet.param1 > 0.5f; if (failsafe->gcs_terminate(should_terminate, "GCS request")) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } /* handle a R/C bind request (for spektrum) */ MAV_RESULT GCS_MAVLINK::handle_rc_bind(const mavlink_command_long_t &packet) { // initiate bind procedure. We accept the DSM type from either // param1 or param2 due to a past mixup with what parameter is the // right one if (!RC_Channels::receiver_bind(packet.param2>0?packet.param2:packet.param1)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } uint64_t GCS_MAVLINK::timesync_receive_timestamp_ns() const { uint64_t ret = _port->receive_time_constraint_us(PAYLOAD_SIZE(chan, TIMESYNC)); if (ret == 0) { ret = AP_HAL::micros64(); } return ret*1000LL; } uint64_t GCS_MAVLINK::timesync_timestamp_ns() const { // we add in our own system id try to ensure we only consider // responses to our own timesync request messages return AP_HAL::micros64()*1000LL + mavlink_system.sysid; } /* return a timesync request Sends back ts1 as received, and tc1 is the local timestamp in usec */ void GCS_MAVLINK::handle_timesync(mavlink_message_t *msg) { // decode incoming timesync message mavlink_timesync_t tsync; mavlink_msg_timesync_decode(msg, &tsync); if (tsync.tc1 != 0) { // this is a response to a timesync request if (tsync.ts1 != _timesync_request.sent_ts1) { // we didn't actually send the request.... or it's a // response to an ancient request... return; } const uint64_t round_trip_time_us = (timesync_receive_timestamp_ns() - _timesync_request.sent_ts1)*0.001f; #if 0 gcs().send_text(MAV_SEVERITY_INFO, "timesync response sysid=%u (latency=%fms)", msg->sysid, round_trip_time_us*0.001f); #endif DataFlash_Class *df = DataFlash_Class::instance(); if (df != nullptr) { DataFlash_Class::instance()->Log_Write( "TSYN", "TimeUS,SysID,RTT", "s-s", "F-F", "QBQ", AP_HAL::micros64(), msg->sysid, round_trip_time_us ); } return; } // create new timesync struct with tc1 field as system time in // nanoseconds. The client timestamp is as close as possible to // the time we received the TIMESYNC message. mavlink_timesync_t rsync; rsync.tc1 = timesync_receive_timestamp_ns(); rsync.ts1 = tsync.ts1; // respond with a timesync message mavlink_msg_timesync_send( chan, rsync.tc1, rsync.ts1 ); } /* * broadcast a timesync message. We may get multiple responses to this request. */ void GCS_MAVLINK::send_timesync() { _timesync_request.sent_ts1 = timesync_timestamp_ns(); mavlink_msg_timesync_send( chan, 0, _timesync_request.sent_ts1 ); } void GCS_MAVLINK::handle_statustext(mavlink_message_t *msg) { DataFlash_Class *df = DataFlash_Class::instance(); if (df == nullptr) { return; } mavlink_statustext_t packet; mavlink_msg_statustext_decode(msg, &packet); const uint8_t max_prefix_len = 20; const uint8_t text_len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1+max_prefix_len; char text[text_len] = { 'G','C','S',':'}; uint8_t offset = strlen(text); if (msg->sysid != sysid_my_gcs()) { offset = hal.util->snprintf(text, max_prefix_len, "SRC=%u/%u:", msg->sysid, msg->compid); } memcpy(&text[offset], packet.text, MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN); df->Log_Write_Message(text); } void GCS_MAVLINK::handle_system_time_message(const mavlink_message_t *msg) { mavlink_system_time_t packet; mavlink_msg_system_time_decode(msg, &packet); AP::rtc().set_utc_usec(packet.time_unix_usec, AP_RTC::SOURCE_MAVLINK_SYSTEM_TIME); } MAV_RESULT GCS_MAVLINK::handle_command_camera(const mavlink_command_long_t &packet) { AP_Camera *camera = get_camera(); if (camera == nullptr) { return MAV_RESULT_UNSUPPORTED; } MAV_RESULT result = MAV_RESULT_FAILED; switch (packet.command) { case MAV_CMD_DO_DIGICAM_CONFIGURE: camera->configure(packet.param1, packet.param2, packet.param3, packet.param4, packet.param5, packet.param6, packet.param7); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_DO_DIGICAM_CONTROL: camera->control(packet.param1, packet.param2, packet.param3, packet.param4, packet.param5, packet.param6); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_DO_SET_CAM_TRIGG_DIST: camera->set_trigger_distance(packet.param1); result = MAV_RESULT_ACCEPTED; break; default: result = MAV_RESULT_UNSUPPORTED; break; } return result; } // sets ekf_origin if it has not been set. // should only be used when there is no GPS to provide an absolute position void GCS_MAVLINK::set_ekf_origin(const Location& loc) { // check location is valid if (!check_latlng(loc)) { return; } AP_AHRS &ahrs = AP::ahrs(); // check if EKF origin has already been set Location ekf_origin; if (ahrs.get_origin(ekf_origin)) { return; } if (!ahrs.set_origin(loc)) { return; } // log ahrs home and ekf origin dataflash ahrs.Log_Write_Home_And_Origin(); // send ekf origin to GCS send_ekf_origin(); } void GCS_MAVLINK::handle_set_gps_global_origin(const mavlink_message_t *msg) { mavlink_set_gps_global_origin_t packet; mavlink_msg_set_gps_global_origin_decode(msg, &packet); // sanity check location if (!check_latlng(packet.latitude, packet.longitude)) { // silently drop the request return; } Location ekf_origin {}; ekf_origin.lat = packet.latitude; ekf_origin.lng = packet.longitude; ekf_origin.alt = packet.altitude / 10; set_ekf_origin(ekf_origin); } /* handle a DATA96 message */ void GCS_MAVLINK::handle_data_packet(mavlink_message_t *msg) { #if HAL_RCINPUT_WITH_AP_RADIO mavlink_data96_t m; mavlink_msg_data96_decode(msg, &m); switch (m.type) { case 42: case 43: { // pass to AP_Radio (for firmware upload and playing test tunes) AP_Radio *radio = AP_Radio::instance(); if (radio != nullptr) { radio->handle_data_packet(chan, m); } break; } default: // unknown break; } #endif } void GCS_MAVLINK::handle_vision_position_delta(mavlink_message_t *msg) { AP_VisualOdom *visual_odom = get_visual_odom(); if (visual_odom == nullptr) { return; } visual_odom->handle_msg(msg); } void GCS_MAVLINK::handle_vision_position_estimate(mavlink_message_t *msg) { mavlink_vision_position_estimate_t m; mavlink_msg_vision_position_estimate_decode(msg, &m); handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, PAYLOAD_SIZE(chan, VISION_POSITION_ESTIMATE)); } void GCS_MAVLINK::handle_global_vision_position_estimate(mavlink_message_t *msg) { mavlink_global_vision_position_estimate_t m; mavlink_msg_global_vision_position_estimate_decode(msg, &m); handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, PAYLOAD_SIZE(chan, GLOBAL_VISION_POSITION_ESTIMATE)); } void GCS_MAVLINK::handle_vicon_position_estimate(mavlink_message_t *msg) { mavlink_vicon_position_estimate_t m; mavlink_msg_vicon_position_estimate_decode(msg, &m); handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, PAYLOAD_SIZE(chan, VICON_POSITION_ESTIMATE)); } // there are several messages which all have identical fields in them. // This function provides common handling for the data contained in // these packets void GCS_MAVLINK::handle_common_vision_position_estimate_data(const uint64_t usec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw, const uint16_t payload_size) { // correct offboard timestamp to be in local ms since boot uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(usec, payload_size); // sensor assumed to be at 0,0,0 body-frame; need parameters for this? // or a new message const Vector3f sensor_offset = {}; const Vector3f pos = { x, y, z }; Quaternion attitude; attitude.from_euler(roll, pitch, yaw); // from_vector312? const float posErr = 0; // parameter required? const float angErr = 0; // parameter required? const uint32_t reset_timestamp_ms = 0; // no data available AP::ahrs().writeExtNavData(sensor_offset, pos, attitude, posErr, angErr, timestamp_ms, reset_timestamp_ms); log_vision_position_estimate_data(usec, x, y, z, roll, pitch, yaw); } void GCS_MAVLINK::log_vision_position_estimate_data(const uint64_t usec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw) { DataFlash_Class::instance()->Log_Write("VISP", "TimeUS,RemTimeUS,PX,PY,PZ,Roll,Pitch,Yaw", "ssmmmrrr", "FF000000", "QQffffff", (uint64_t)AP_HAL::micros64(), (uint64_t)usec, (double)x, (double)y, (double)z, (double)roll, (double)pitch, (double)yaw); } void GCS_MAVLINK::handle_att_pos_mocap(mavlink_message_t *msg) { mavlink_att_pos_mocap_t m; mavlink_msg_att_pos_mocap_decode(msg, &m); // sensor assumed to be at 0,0,0 body-frame; need parameters for this? const Vector3f sensor_offset = {}; const Vector3f pos = { m.x, m.y, m.z }; Quaternion attitude = Quaternion(m.q); const float posErr = 0; // parameter required? const float angErr = 0; // parameter required? // correct offboard timestamp to be in local ms since boot uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(m.time_usec, PAYLOAD_SIZE(chan, ATT_POS_MOCAP)); const uint32_t reset_timestamp_ms = 0; // no data available AP::ahrs().writeExtNavData(sensor_offset, pos, attitude, posErr, angErr, timestamp_ms, reset_timestamp_ms); // calculate euler orientation for logging float roll; float pitch; float yaw; attitude.to_euler(roll, pitch, yaw); log_vision_position_estimate_data(m.time_usec, m.x, m.y, m.z, roll, pitch, yaw); } void GCS_MAVLINK::handle_command_ack(const mavlink_message_t* msg) { AP_AccelCal *accelcal = AP::ins().get_acal(); if (accelcal != nullptr) { accelcal->handleMessage(msg); } } /* handle messages which don't require vehicle specific data */ void GCS_MAVLINK::handle_common_message(mavlink_message_t *msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_COMMAND_ACK: { handle_command_ack(msg); break; } case MAVLINK_MSG_ID_SETUP_SIGNING: handle_setup_signing(msg); break; case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: case MAVLINK_MSG_ID_PARAM_SET: case MAVLINK_MSG_ID_PARAM_REQUEST_READ: handle_common_param_message(msg); break; case MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN: handle_set_gps_global_origin(msg); break; case MAVLINK_MSG_ID_DEVICE_OP_READ: handle_device_op_read(msg); break; case MAVLINK_MSG_ID_DEVICE_OP_WRITE: handle_device_op_write(msg); break; case MAVLINK_MSG_ID_TIMESYNC: handle_timesync(msg); break; case MAVLINK_MSG_ID_LOG_REQUEST_LIST: case MAVLINK_MSG_ID_LOG_REQUEST_DATA: case MAVLINK_MSG_ID_LOG_ERASE: case MAVLINK_MSG_ID_LOG_REQUEST_END: case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS: DataFlash_Class::instance()->handle_mavlink_msg(*this, msg); break; case MAVLINK_MSG_ID_DIGICAM_CONTROL: { AP_Camera *camera = get_camera(); if (camera == nullptr) { return; } camera->control_msg(msg); } break; case MAVLINK_MSG_ID_SET_MODE: handle_set_mode(msg); break; case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST: handle_send_autopilot_version(msg); break; case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: case MAVLINK_MSG_ID_MISSION_COUNT: case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: case MAVLINK_MSG_ID_MISSION_ITEM: case MAVLINK_MSG_ID_MISSION_ITEM_INT: case MAVLINK_MSG_ID_MISSION_REQUEST_INT: case MAVLINK_MSG_ID_MISSION_REQUEST: case MAVLINK_MSG_ID_MISSION_ACK: case MAVLINK_MSG_ID_MISSION_SET_CURRENT: handle_common_mission_message(msg); break; case MAVLINK_MSG_ID_COMMAND_LONG: handle_command_long(msg); break; case MAVLINK_MSG_ID_COMMAND_INT: handle_command_int(msg); break; case MAVLINK_MSG_ID_SERIAL_CONTROL: handle_serial_control(msg); break; case MAVLINK_MSG_ID_GPS_RTCM_DATA: case MAVLINK_MSG_ID_GPS_INPUT: case MAVLINK_MSG_ID_HIL_GPS: case MAVLINK_MSG_ID_GPS_INJECT_DATA: AP::gps().handle_msg(msg); break; case MAVLINK_MSG_ID_STATUSTEXT: handle_statustext(msg); break; case MAVLINK_MSG_ID_LED_CONTROL: // send message to Notify AP_Notify::handle_led_control(msg); break; case MAVLINK_MSG_ID_PLAY_TUNE: // send message to Notify AP_Notify::handle_play_tune(msg); break; case MAVLINK_MSG_ID_RALLY_POINT: case MAVLINK_MSG_ID_RALLY_FETCH_POINT: handle_common_rally_message(msg); break; case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: handle_request_data_stream(msg); break; case MAVLINK_MSG_ID_DATA96: handle_data_packet(msg); break; case MAVLINK_MSG_ID_VISION_POSITION_DELTA: handle_vision_position_delta(msg); break; case MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE: handle_vision_position_estimate(msg); break; case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE: handle_global_vision_position_estimate(msg); break; case MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE: handle_vicon_position_estimate(msg); break; case MAVLINK_MSG_ID_ATT_POS_MOCAP: handle_att_pos_mocap(msg); break; case MAVLINK_MSG_ID_SYSTEM_TIME: handle_system_time_message(msg); break; } } void GCS_MAVLINK::handle_common_mission_message(mavlink_message_t *msg) { AP_Mission *_mission = get_mission(); if (_mission == nullptr) { return; } switch (msg->msgid) { case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38 { handle_mission_write_partial_list(*_mission, msg); break; } // GCS has sent us a mission item, store to EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39 case MAVLINK_MSG_ID_MISSION_ITEM_INT: { if (handle_mission_item(msg, *_mission)) { DataFlash_Class::instance()->Log_Write_EntireMission(*_mission); } break; } // read an individual command from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST_INT: case MAVLINK_MSG_ID_MISSION_REQUEST: // MAV ID: 40, 51 { handle_mission_request(*_mission, msg); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41 { handle_mission_set_current(*_mission, msg); break; } // GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43 { handle_mission_request_list(*_mission, msg); break; } // GCS provides the full number of commands it wishes to upload // individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44 { handle_mission_count(*_mission, msg); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45 { handle_mission_clear_all(*_mission, msg); break; } case MAVLINK_MSG_ID_MISSION_ACK: /* not used */ break; } } void GCS_MAVLINK::handle_send_autopilot_version(const mavlink_message_t *msg) { send_autopilot_version(); } void GCS_MAVLINK::send_banner() { // mark the firmware version in the tlog const AP_FWVersion &fwver = AP::fwversion(); send_text(MAV_SEVERITY_INFO, fwver.fw_string); if (fwver.middleware_name && fwver.os_name) { send_text(MAV_SEVERITY_INFO, "%s: %s %s: %s", fwver.middleware_name, fwver.middleware_hash_str, fwver.os_name, fwver.os_hash_str); } else if (fwver.os_name) { send_text(MAV_SEVERITY_INFO, "%s: %s", fwver.os_name, fwver.os_hash_str); } // send system ID if we can char sysid[40]; if (hal.util->get_system_id(sysid)) { send_text(MAV_SEVERITY_INFO, sysid); } } void GCS_MAVLINK::send_simstate() const { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SITL *sitl = AP::sitl(); if (sitl == nullptr) { return; } sitl->simstate_send(get_chan()); #endif } MAV_RESULT GCS_MAVLINK::handle_command_flash_bootloader(const mavlink_command_long_t &packet) { if (uint32_t(packet.param5) != 290876) { gcs().send_text(MAV_SEVERITY_INFO, "Magic not set"); return MAV_RESULT_FAILED; } if (!hal.util->flash_bootloader()) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_preflight_set_sensor_offsets(const mavlink_command_long_t &packet) { Compass *compass = get_compass(); if (compass == nullptr) { return MAV_RESULT_UNSUPPORTED; } uint8_t compassNumber = -1; if (is_equal(packet.param1, 2.0f)) { compassNumber = 0; } else if (is_equal(packet.param1, 5.0f)) { compassNumber = 1; } else if (is_equal(packet.param1, 6.0f)) { compassNumber = 2; } if (compassNumber == (uint8_t) -1) { return MAV_RESULT_FAILED; } compass->set_and_save_offsets(compassNumber, packet.param2, packet.param3, packet.param4); return MAV_RESULT_ACCEPTED; } bool GCS_MAVLINK::calibrate_gyros() { AP::ins().init_gyro(); if (!AP::ins().gyro_calibrated_ok_all()) { return false; } AP::ahrs().reset_gyro_drift(); return true; } MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration_baro() { // fast barometer calibration gcs().send_text(MAV_SEVERITY_INFO, "Updating barometer calibration"); AP::baro().update_calibration(); gcs().send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed != nullptr) { airspeed->calibrate(false); } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param1,1.0f)) { if (!calibrate_gyros()) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } if (is_equal(packet.param3,1.0f)) { return _handle_command_preflight_calibration_baro(); } if (is_equal(packet.param5,1.0f)) { // start with gyro calibration if (!calibrate_gyros()) { return MAV_RESULT_FAILED; } // start accel cal AP::ins().acal_init(); AP::ins().get_acal()->start(this); return MAV_RESULT_ACCEPTED; } if (is_equal(packet.param5,2.0f)) { if (!calibrate_gyros()) { return MAV_RESULT_FAILED; } float trim_roll, trim_pitch; if (!AP::ins().calibrate_trim(trim_roll, trim_pitch)) { return MAV_RESULT_FAILED; } // reset ahrs's trim to suggested values from calibration routine AP::ahrs().set_trim(Vector3f(trim_roll, trim_pitch, 0)); return MAV_RESULT_ACCEPTED; } if (is_equal(packet.param5,4.0f)) { // simple accel calibration return AP::ins().simple_accel_cal(); } return MAV_RESULT_UNSUPPORTED; } MAV_RESULT GCS_MAVLINK::handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (hal.util->get_soft_armed()) { // *preflight*, remember? return MAV_RESULT_FAILED; } // now call subclass methods: return _handle_command_preflight_calibration(packet); } MAV_RESULT GCS_MAVLINK::handle_command_mag_cal(const mavlink_command_long_t &packet) { Compass *compass = get_compass(); if (compass == nullptr) { return MAV_RESULT_UNSUPPORTED; } return compass->handle_mag_cal_command(packet); } MAV_RESULT GCS_MAVLINK::handle_command_request_autopilot_capabilities(const mavlink_command_long_t &packet) { if (!is_equal(packet.param1,1.0f)) { return MAV_RESULT_FAILED; } send_autopilot_version(); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_do_send_banner(const mavlink_command_long_t &packet) { send_banner(); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_do_set_mode(const mavlink_command_long_t &packet) { const MAV_MODE _base_mode = (MAV_MODE)packet.param1; const uint32_t _custom_mode = (uint32_t)packet.param2; return _set_mode_common(_base_mode, _custom_mode); } MAV_RESULT GCS_MAVLINK::handle_command_get_home_position(const mavlink_command_long_t &packet) { if (!AP::ahrs().home_is_set()) { return MAV_RESULT_FAILED; } send_home(); send_ekf_origin(); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_do_gripper(const mavlink_command_long_t &packet) { AP_Gripper *gripper = AP::gripper(); if (gripper == nullptr) { return MAV_RESULT_FAILED; } // param1 : gripper number (ignored) // param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum. if(!gripper->enabled()) { return MAV_RESULT_FAILED; } MAV_RESULT result = MAV_RESULT_ACCEPTED; switch ((uint8_t)packet.param2) { case GRIPPER_ACTION_RELEASE: gripper->release(); break; case GRIPPER_ACTION_GRAB: gripper->grab(); break; default: result = MAV_RESULT_FAILED; break; } return result; } MAV_RESULT GCS_MAVLINK::handle_command_accelcal_vehicle_pos(const mavlink_command_long_t &packet) { if (!AP::ins().get_acal()->gcs_vehicle_position(packet.param1)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_long_packet(const mavlink_command_long_t &packet) { MAV_RESULT result = MAV_RESULT_FAILED; switch (packet.command) { case MAV_CMD_ACCELCAL_VEHICLE_POS: result = handle_command_accelcal_vehicle_pos(packet); break; case MAV_CMD_DO_SET_MODE: result = handle_command_do_set_mode(packet); break; case MAV_CMD_DO_SEND_BANNER: result = handle_command_do_send_banner(packet); break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: result = handle_preflight_reboot(packet); break; case MAV_CMD_DO_START_MAG_CAL: case MAV_CMD_DO_ACCEPT_MAG_CAL: case MAV_CMD_DO_CANCEL_MAG_CAL: { result = handle_command_mag_cal(packet); break; } case MAV_CMD_START_RX_PAIR: result = handle_rc_bind(packet); break; case MAV_CMD_DO_DIGICAM_CONFIGURE: case MAV_CMD_DO_DIGICAM_CONTROL: case MAV_CMD_DO_SET_CAM_TRIGG_DIST: result = handle_command_camera(packet); break; case MAV_CMD_DO_GRIPPER: result = handle_command_do_gripper(packet); break; case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: { result = handle_command_request_autopilot_capabilities(packet); break; } case MAV_CMD_PREFLIGHT_CALIBRATION: result = handle_command_preflight_calibration(packet); break; case MAV_CMD_FLASH_BOOTLOADER: result = handle_command_flash_bootloader(packet); break; case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: { result = handle_command_preflight_set_sensor_offsets(packet); break; } case MAV_CMD_GET_HOME_POSITION: result = handle_command_get_home_position(packet); break; case MAV_CMD_PREFLIGHT_STORAGE: if (is_equal(packet.param1, 2.0f)) { AP_Param::erase_all(); send_text(MAV_SEVERITY_WARNING, "All parameters reset, reboot board"); result= MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_SERVO: case MAV_CMD_DO_REPEAT_SERVO: case MAV_CMD_DO_SET_RELAY: case MAV_CMD_DO_REPEAT_RELAY: result = handle_servorelay_message(packet); break; case MAV_CMD_DO_FLIGHTTERMINATION: result = handle_flight_termination(packet); break; default: result = MAV_RESULT_UNSUPPORTED; break; } return result; } void GCS_MAVLINK::handle_command_long(mavlink_message_t *msg) { // decode packet mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); const MAV_RESULT result = handle_command_long_packet(packet); // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result); } MAV_RESULT GCS_MAVLINK::handle_command_int_packet(const mavlink_command_int_t &packet) { return MAV_RESULT_UNSUPPORTED; } void GCS_MAVLINK::handle_command_int(mavlink_message_t *msg) { // decode packet mavlink_command_int_t packet; mavlink_msg_command_int_decode(msg, &packet); const MAV_RESULT result = handle_command_int_packet(packet); // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result); } bool GCS_MAVLINK::try_send_compass_message(const enum ap_message id) { Compass *compass = get_compass(); if (compass == nullptr) { return true; } bool ret = true; switch (id) { case MSG_MAG_CAL_PROGRESS: compass->send_mag_cal_progress(chan); ret = true;; break; case MSG_MAG_CAL_REPORT: compass->send_mag_cal_report(chan); ret = true; break; default: ret = true; break; } return ret; } bool GCS_MAVLINK::try_send_mission_message(const enum ap_message id) { AP_Mission *mission = get_mission(); if (mission == nullptr) { return true; } bool ret = true; switch (id) { case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); mavlink_msg_mission_current_send(chan, mission->get_current_nav_index()); ret = true; break; case MSG_MISSION_ITEM_REACHED: CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED); mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index); ret = true; break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); queued_waypoint_send(); ret = true; break; default: ret = true; break; } return ret; } void GCS_MAVLINK::send_hwstatus() { mavlink_msg_hwstatus_send( chan, hal.analogin->board_voltage()*1000, 0); } void GCS_MAVLINK::send_attitude() const { const AP_AHRS &ahrs = AP::ahrs(); const Vector3f omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, AP_HAL::millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, omega.x, omega.y, omega.z); } int32_t GCS_MAVLINK::global_position_int_alt() const { return global_position_current_loc.alt * 10UL; } int32_t GCS_MAVLINK::global_position_int_relative_alt() const { float posD; AP::ahrs().get_relative_position_D_home(posD); posD *= -1000.0f; // change from down to up and metres to millimeters return posD; } void GCS_MAVLINK::send_global_position_int() { AP_AHRS &ahrs = AP::ahrs(); ahrs.get_position(global_position_current_loc); // return value ignored; we send stale data Vector3f vel; ahrs.get_velocity_NED(vel); mavlink_msg_global_position_int_send( chan, AP_HAL::millis(), global_position_current_loc.lat, // in 1E7 degrees global_position_current_loc.lng, // in 1E7 degrees global_position_int_alt(), // millimeters above ground/sea level global_position_int_relative_alt(), // millimeters above home vel.x * 100, // X speed cm/s (+ve North) vel.y * 100, // Y speed cm/s (+ve East) vel.z * 100, // Z speed cm/s (+ve Down) ahrs.yaw_sensor); // compass heading in 1/100 degree } bool GCS_MAVLINK::try_send_message(const enum ap_message id) { if (telemetry_delayed()) { return false; } bool ret = true; switch(id) { case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); send_attitude(); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); queued_param_send(); break; case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); last_heartbeat_time = AP_HAL::millis(); send_heartbeat(); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); send_hwstatus(); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); send_global_position_int(); break; case MSG_CURRENT_WAYPOINT: case MSG_MISSION_ITEM_REACHED: case MSG_NEXT_WAYPOINT: ret = try_send_mission_message(id); break; case MSG_MAG_CAL_PROGRESS: case MSG_MAG_CAL_REPORT: ret = try_send_compass_message(id); break; case MSG_BATTERY_STATUS: send_battery_status(); break; case MSG_BATTERY2: CHECK_PAYLOAD_SIZE(BATTERY2); send_battery2(); break; case MSG_EKF_STATUS_REPORT: #if AP_AHRS_NAVEKF_AVAILABLE CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT); AP::ahrs_navekf().send_ekf_status_report(chan); #endif break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); send_meminfo(); break; case MSG_RANGEFINDER: CHECK_PAYLOAD_SIZE(RANGEFINDER); send_rangefinder_downward(); ret = send_distance_sensor(); ret = ret && send_proximity(); break; case MSG_CAMERA_FEEDBACK: { AP_Camera *camera = get_camera(); if (camera == nullptr) { break; } CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK); camera->send_feedback(chan); } break; case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); send_system_time(); break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); AP::gps().send_mavlink_gps_raw(chan); break; case MSG_GPS_RTK: CHECK_PAYLOAD_SIZE(GPS_RTK); AP::gps().send_mavlink_gps_rtk(chan, 0); break; case MSG_GPS2_RAW: CHECK_PAYLOAD_SIZE(GPS2_RAW); AP::gps().send_mavlink_gps2_raw(chan); break; case MSG_GPS2_RTK: CHECK_PAYLOAD_SIZE(GPS2_RTK); AP::gps().send_mavlink_gps_rtk(chan, 1); break; case MSG_LOCAL_POSITION: CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED); send_local_position(); break; case MSG_POSITION_TARGET_GLOBAL_INT: CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT); send_position_target_global_int(); break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); send_radio_in(); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); send_raw_imu(); break; case MSG_RAW_IMU2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); send_scaled_pressure(); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); send_sensor_offsets(); break; case MSG_SERVO_OUTPUT_RAW: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_servo_output_raw(); break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); send_simstate(); CHECK_PAYLOAD_SIZE(AHRS2); send_ahrs2(); break; case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); send_ahrs(); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); send_vfr_hud(); break; case MSG_VIBRATION: CHECK_PAYLOAD_SIZE(VIBRATION); send_vibration(); break; case MSG_ESC_TELEMETRY: { #ifdef HAVE_AP_BLHELI_SUPPORT CHECK_PAYLOAD_SIZE(ESC_TELEMETRY_1_TO_4); AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { blheli->send_esc_telemetry_mavlink(uint8_t(chan)); } #endif break; } default: // try_send_message must always at some stage return true for // a message, or we will attempt to infinitely retry the // message as part of send_message. // This message will be sent out at the same rate as the // unknown message, so should be safe. gcs().send_text(MAV_SEVERITY_DEBUG, "Sending unknown message (%u)", id); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL AP_HAL::panic("Sending unknown ap_message %u", id); #endif break; } return ret; } void GCS_MAVLINK::data_stream_send(void) { if (waypoint_receiving) { // don't interfere with mission transfer return; } if (!hal.scheduler->in_delay_callback()) { // DataFlash_Class will not send log data if we are armed. DataFlash_Class::instance()->handle_log_send(); } gcs().set_out_of_time(false); send_queued_parameters(); if (gcs().out_of_time()) return; if (hal.scheduler->in_delay_callback()) { if (in_hil_mode()) { // in HIL we need to keep sending servo values to ensure // the simulator doesn't pause, otherwise our sensor // calibration could stall if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_SERVO_OUTPUT_RAW); } } // send no other streams while in delay, just in case they // take way too long to run return; } for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) { const streams id = (streams)all_stream_entries[i].stream_id; if (!stream_trigger(id)) { continue; } const ap_message *msg_ids = all_stream_entries[i].ap_message_ids; for (uint8_t j=0; jreceive_time_constraint_us(payload_size); if (uart_receive_time != 0) { local_us = uart_receive_time; } else { local_us = AP_HAL::micros64(); } int64_t diff_us = int64_t(local_us) - int64_t(offboard_usec); if (!lag_correction.initialised || diff_us < lag_correction.link_offset_usec) { // this message arrived from the remote system with a // timestamp that would imply the message was from the // future. We know that isn't possible, so we adjust down the // correction value lag_correction.link_offset_usec = diff_us; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL printf("link_offset_usec=%lld\n", (long long int)diff_us); #endif lag_correction.initialised = true; } int64_t estimate_us = offboard_usec + lag_correction.link_offset_usec; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (estimate_us > (int64_t)local_us) { // this should be impossible, just check it under SITL printf("msg from future %lld\n", (long long int)(estimate_us - local_us)); } #endif if (estimate_us + max_lag_us < int64_t(local_us)) { // this implies the message came from too far in the past. Clamp the lag estimate // to assume the message had maximum lag estimate_us = local_us - max_lag_us; lag_correction.link_offset_usec = estimate_us - offboard_usec; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL printf("offboard timestammp too old %lld\n", (long long int)(local_us - estimate_us)); #endif } if (lag_correction.min_sample_counter == 0) { lag_correction.min_sample_us = diff_us; } lag_correction.min_sample_counter++; if (diff_us < lag_correction.min_sample_us) { lag_correction.min_sample_us = diff_us; } if (lag_correction.min_sample_counter == 200) { // we have 200 samples of the transport lag. To // account for long term clock drift we set the diff we will // use in future to this value lag_correction.link_offset_usec = lag_correction.min_sample_us; lag_correction.min_sample_counter = 0; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL printf("new link_offset_usec=%lld\n", (long long int)(lag_correction.min_sample_us)); #endif } return estimate_us / 1000U; } GCS &gcs() { return *GCS::instance(); }