/// @file AP_MotorsHeli_Single.h /// @brief Motor control class for traditional heli #pragma once #include #include // ArduPilot Mega Vector/Matrix math Library #include #include "AP_MotorsHeli.h" #include "AP_MotorsHeli_RSC.h" // rsc and extgyro function output channels. #define AP_MOTORS_HELI_SINGLE_RSC CH_8 #define AP_MOTORS_HELI_SINGLE_EXTGYRO CH_7 #define AP_MOTORS_HELI_SINGLE_TAILRSC CH_7 // servo position defaults #define AP_MOTORS_HELI_SINGLE_SERVO1_POS -60 #define AP_MOTORS_HELI_SINGLE_SERVO2_POS 60 #define AP_MOTORS_HELI_SINGLE_SERVO3_POS 180 // swash type definitions #define AP_MOTORS_HELI_SINGLE_SWASH_H3 0 #define AP_MOTORS_HELI_SINGLE_SWASH_H1 1 #define AP_MOTORS_HELI_SINGLE_SWASH_H3_140 2 // collective control direction definitions #define AP_MOTORS_HELI_SINGLE_COLLECTIVE_DIRECTION_NORMAL 0 #define AP_MOTORS_HELI_SINGLE_COLLECTIVE_DIRECTION_REVERSED 1 // tail types #define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO 0 #define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO 1 #define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH 2 #define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH 3 // direct-drive variable pitch defaults #define AP_MOTORS_HELI_SINGLE_DDVP_SPEED_DEFAULT 500 // default external gyro gain #define AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN 350 // COLYAW parameter min and max values #define AP_MOTORS_HELI_SINGLE_COLYAW_RANGE 10.0f // maximum number of swashplate servos #define AP_MOTORS_HELI_SINGLE_NUM_SWASHPLATE_SERVOS 3 /// @class AP_MotorsHeli_Single class AP_MotorsHeli_Single : public AP_MotorsHeli { public: // constructor AP_MotorsHeli_Single(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_MotorsHeli(loop_rate, speed_hz), _main_rotor(SRV_Channel::k_heli_rsc, AP_MOTORS_HELI_SINGLE_RSC), _tail_rotor(SRV_Channel::k_heli_tail_rsc, AP_MOTORS_HELI_SINGLE_TAILRSC) { AP_Param::setup_object_defaults(this, var_info); }; // set update rate to motors - a value in hertz void set_update_rate(uint16_t speed_hz) override; // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void output_test(uint8_t motor_seq, int16_t pwm) override; // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1 void set_desired_rotor_speed(float desired_speed) override; // get_main_rotor_speed - gets estimated or measured main rotor speed float get_main_rotor_speed() const override { return _main_rotor.get_rotor_speed(); } // get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1 float get_desired_rotor_speed() const override { return _main_rotor.get_desired_speed(); } // rotor_speed_above_critical - return true if rotor speed is above that critical for flight bool rotor_speed_above_critical() const override { return _main_rotor.get_rotor_speed() > _main_rotor.get_critical_speed(); } // calculate_scalars - recalculates various scalars used void calculate_scalars() override; // calculate_armed_scalars - recalculates scalars that can change while armed void calculate_armed_scalars() override; // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t get_motor_mask() override; // ext_gyro_gain - set external gyro gain in range 0 ~ 1 void ext_gyro_gain(float gain) override { _ext_gyro_gain_std = gain * 1000.0f; } // has_flybar - returns true if we have a mechical flybar bool has_flybar() const override { return _flybar_mode; } // supports_yaw_passthrought - returns true if we support yaw passthrough bool supports_yaw_passthrough() const override { return _tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO; } void set_acro_tail(bool set) override { _acro_tail = set; } // parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check bool parameter_check(bool display_msg) const override; // var_info static const struct AP_Param::GroupInfo var_info[]; protected: // init_outputs - initialise Servo/PWM ranges and endpoints bool init_outputs() override; // update_motor_controls - sends commands to motor controllers void update_motor_control(RotorControlState state) override; // calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position void calculate_roll_pitch_collective_factors() override; // heli_move_actuators - moves swash plate and tail rotor void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) override; // move_yaw - moves the yaw servo void move_yaw(float yaw_out); // servo_test - move servos through full range of movement void servo_test() override; // external objects we depend upon AP_MotorsHeli_RSC _main_rotor; // main rotor AP_MotorsHeli_RSC _tail_rotor; // tail rotor // internal variables float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function float _yaw_test = 0.0f; // over-ride for yaw output, used by servo_test function // parameters AP_Int16 _servo1_pos; // Angular location of swash servo #1 AP_Int16 _servo2_pos; // Angular location of swash servo #2 AP_Int16 _servo3_pos; // Angular location of swash servo #3 AP_Int8 _collective_direction; // Collective control direction, normal or reversed AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch AP_Int8 _swash_type; // Swash Type Setting AP_Int16 _ext_gyro_gain_std; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro AP_Int16 _ext_gyro_gain_acro; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro in ACRO AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem AP_Float _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics. AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000) bool _acro_tail = false; float _rollFactor[AP_MOTORS_HELI_SINGLE_NUM_SWASHPLATE_SERVOS]; float _pitchFactor[AP_MOTORS_HELI_SINGLE_NUM_SWASHPLATE_SERVOS]; float _collectiveFactor[AP_MOTORS_HELI_SINGLE_NUM_SWASHPLATE_SERVOS]; };