/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_Compass_PX4.cpp - Arduino Library for PX4 magnetometer
*
*/
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include "AP_Compass_PX4.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
extern const AP_HAL::HAL& hal;
// Public Methods //////////////////////////////////////////////////////////////
// constructor
AP_Compass_PX4::AP_Compass_PX4(Compass &compass):
AP_Compass_Backend(compass),
_num_sensors(0)
{
}
// detect the sensor
AP_Compass_Backend *AP_Compass_PX4::detect(Compass &compass)
{
AP_Compass_PX4 *sensor = new AP_Compass_PX4(compass);
if (sensor == NULL) {
return NULL;
}
if (!sensor->init()) {
delete sensor;
return NULL;
}
return sensor;
}
bool AP_Compass_PX4::init(void)
{
_mag_fd[0] = open(MAG_BASE_DEVICE_PATH"0", O_RDONLY);
_mag_fd[1] = open(MAG_BASE_DEVICE_PATH"1", O_RDONLY);
_mag_fd[2] = open(MAG_BASE_DEVICE_PATH"2", O_RDONLY);
_num_sensors = 0;
for (uint8_t i=0; i= 0) {
_num_sensors = i+1;
}
}
if (_num_sensors == 0) {
hal.console->printf("Unable to open " MAG_BASE_DEVICE_PATH"0" "\n");
return false;
}
for (uint8_t i=0; i<_num_sensors; i++) {
_instance[i] = register_compass();
// get device id
set_dev_id(_instance[i], ioctl(_mag_fd[i], DEVIOCGDEVICEID, 0));
// average over up to 20 samples
if (ioctl(_mag_fd[i], SENSORIOCSQUEUEDEPTH, 20) != 0) {
hal.console->printf("Failed to setup compass queue\n");
return false;
}
// remember if the compass is external
set_external(_instance[i], ioctl(_mag_fd[i], MAGIOCGEXTERNAL, 0) > 0);
_count[i] = 0;
_sum[i].zero();
}
// give the driver a chance to run, and gather one sample
hal.scheduler->delay(40);
accumulate();
if (_count[0] == 0) {
hal.console->printf("Failed initial compass accumulate\n");
}
return true;
}
void AP_Compass_PX4::read(void)
{
// try to accumulate one more sample, so we have the latest data
accumulate();
for (uint8_t i=0; i<_num_sensors; i++) {
uint8_t frontend_instance = _instance[i];
// avoid division by zero if we haven't received any mag reports
if (_count[i] == 0) continue;
_sum[i] /= _count[i];
publish_filtered_field(_sum[i], frontend_instance);
_sum[i].zero();
_count[i] = 0;
}
}
void AP_Compass_PX4::accumulate(void)
{
struct mag_report mag_report;
for (uint8_t i=0; i<_num_sensors; i++) {
uint8_t frontend_instance = _instance[i];
while (::read(_mag_fd[i], &mag_report, sizeof(mag_report)) == sizeof(mag_report) &&
mag_report.timestamp != _last_timestamp[i]) {
uint32_t time_us = (uint32_t)mag_report.timestamp;
// get raw_field - sensor frame, uncorrected
Vector3f raw_field = Vector3f(mag_report.x, mag_report.y, mag_report.z)*1.0e3f;
// rotate raw_field from sensor frame to body frame
rotate_field(raw_field, frontend_instance);
// publish raw_field (uncorrected point sample) for calibration use
publish_raw_field(raw_field, time_us, frontend_instance);
// correct raw_field for known errors
correct_field(raw_field, frontend_instance);
// publish raw_field (corrected point sample) for EKF use
publish_unfiltered_field(raw_field, time_us, frontend_instance);
// accumulate into averaging filter
_sum[i] += raw_field;
_count[i]++;
_last_timestamp[i] = mag_report.timestamp;
}
}
}
#endif // CONFIG_HAL_BOARD