// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //**************************************************************** // Function that will calculate the desired direction to fly and distance //**************************************************************** void navigate() { // do not navigate with corrupt data // --------------------------------- if (g_gps->fix == 0){ g_gps->new_data = false; return; } if(next_WP.lat == 0){ return; } // waypoint distance from plane // ---------------------------- wp_distance = get_distance(¤t_loc, &next_WP); if (wp_distance < 0){ gcs.send_text_P(SEVERITY_HIGH,PSTR(" WP error - distance < 0")); //Serial.println(wp_distance,DEC); //print_current_waypoints(); return; } // target_bearing is where we should be heading // -------------------------------------------- target_bearing = get_bearing(¤t_loc, &next_WP); // nav_bearing will includes xtrac correction // ------------------------------------------ nav_bearing = target_bearing; } bool check_missed_wp() { long temp = target_bearing - saved_target_bearing; temp = wrap_180(temp); return (abs(temp) > 10000); //we pased the waypoint by 10 ° } #define DIST_ERROR_MAX 1800 void calc_loiter_nav() { /* Becuase we are using lat and lon to do our distance errors here's a quick chart: 100 = 1m 1000 = 11m = 36 feet 1800 = 19.80m = 60 feet 3000 = 33m 10000 = 111m pitch_max = 22° (2200) */ // X ROLL long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST // Y PITCH lat_error = current_loc.lat - next_WP.lat; // 0 - 500 = -500 pitch NORTH long_error = constrain(long_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error lat_error = constrain(lat_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav, 1.0); // X 700 * 2.5 = 1750, nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav, 1.0); // Y invert lat (for pitch) long pmax = g.pitch_max.get(); nav_lon = constrain(nav_lon, -pmax, pmax); nav_lat = constrain(nav_lat, -pmax, pmax); } void calc_loiter_output() { // rotate the vector nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * -cos_yaw_x; // BAD //NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left //WEST -1000 * 0 - 1000 * -1 = 1000 // roll right - Backwards //EAST -1000 * 0 - 1000 * 1 = -1000 // roll left - Backwards //SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right // GOOD //NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left //WEST -1000 * 0 - 1000 * 1 = -1000 // roll right //EAST -1000 * 0 - 1000 * -1 = 1000 // roll left //SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right nav_pitch = ((float)nav_lon * -cos_yaw_x + (float)nav_lat * sin_yaw_y); // BAD //NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back //WEST -1000 * -1 + 1000 * 0 = 1000 // pitch back - Backwards //EAST -1000 * 1 + 1000 * 0 = -1000 // pitch forward - Backwards //SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward // GOOD //NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back //WEST -1000 * 1 + 1000 * 0 = -1000 // pitch forward //EAST -1000 * -1 + 1000 * 0 = 1000 // pitch back //SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward //limit our copter pitch - this will change if we go to a fully rate limited approach. //limit_nav_pitch_roll(g.pitch_max.get()); } void calc_simple_nav() { // no dampening here in SIMPLE mode nav_lat = constrain((wp_distance * 100), -1800, 1800); // +- 20m max error // Scale response by kP nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36° } void calc_nav_output() { // get the sin and cos of the bearing error - rotated 90° sin_nav_y = sin(radians((float)(9000 - bearing_error) / 100)); cos_nav_x = cos(radians((float)(bearing_error - 9000) / 100)); // rotate the vector nav_roll = (float)nav_lat * cos_nav_x; nav_pitch = -(float)nav_lat * sin_nav_y; } #define WAYPOINT_SPEED 450 #if NAV_TEST == 0 void calc_rate_nav() { // calc distance error nav_lat = min((wp_distance * 100), 1800); // +- 20m max error // Scale response by kP nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36° // Scale response by kP //long output = g.pid_nav_wp.kP() * error; int dampening = g.pid_nav_wp.kD() * (g_gps->ground_speed - last_ground_speed); // remember our old speed last_ground_speed = g_gps->ground_speed; // dampen our response nav_lat -= constrain(dampening, -1800, 1800); // +- 20m max error } #else // called after we get GPS read void calc_rate_nav() { // which direction are we moving? long target_error = target_bearing - g_gps->ground_course; target_error = wrap_180(target_error); // calc the cos of the error to tell how fast we are moving towards the target in cm int groundspeed = (float)g_gps->ground_speed * cos(radians((float)target_error/100)); // change to rate error // we want to be going 450cm/s int error = constrain(WAYPOINT_SPEED - groundspeed, -1000, 1000); // Scale response by kP nav_lat = nav_lat + g.pid_nav_wp.get_pid(error, dTnav, 1.0); nav_lat >>= 1; // divide by two // unfiltered: //nav_lat = g.pid_nav_wp.get_pid(error, dTnav, 1.0); //Serial.printf("dTnav: %ld, gs: %d, err: %d, int: %d, pitch: %ld", dTnav, groundspeed, error, (int)g.pid_nav_wp.get_integrator(), (long)nav_lat); // limit our output nav_lat = constrain(nav_lat, -4000, 4000); // +- max error } #endif void calc_bearing_error() { bearing_error = nav_bearing - dcm.yaw_sensor; bearing_error = wrap_180(bearing_error); } void calc_altitude_error() { altitude_error = next_WP.alt - current_loc.alt; } void calc_altitude_smoothing_error() { // limit climb rates - we draw a straight line between first location and edge of waypoint_radius target_altitude = next_WP.alt - ((wp_distance * (next_WP.alt - prev_WP.alt)) / (wp_totalDistance - g.waypoint_radius)); // stay within a certain range if(prev_WP.alt > next_WP.alt){ target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt); }else{ target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt); } altitude_error = target_altitude - current_loc.alt; } long wrap_360(long error) { if (error > 36000) error -= 36000; if (error < 0) error += 36000; return error; } long wrap_180(long error) { if (error > 18000) error -= 36000; if (error < -18000) error += 36000; return error; } void update_crosstrack(void) { // Crosstrack Error // ---------------- if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); nav_bearing = wrap_360(nav_bearing); } } long cross_track_test() { long temp = target_bearing - crosstrack_bearing; temp = wrap_180(temp); return abs(temp); } void reset_crosstrack() { crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following } long get_altitude_above_home(void) { // This is the altitude above the home location // The GPS gives us altitude at Sea Level // if you slope soar, you should see a negative number sometimes // ------------------------------------------------------------- return current_loc.alt - home.alt; } // distance is returned in meters long get_distance(struct Location *loc1, struct Location *loc2) { //if(loc1->lat == 0 || loc1->lng == 0) // return -1; //if(loc2->lat == 0 || loc2->lng == 0) // return -1; float dlat = (float)(loc2->lat - loc1->lat); float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; return sqrt(sq(dlat) + sq(dlong)) * .01113195; } long get_alt_distance(struct Location *loc1, struct Location *loc2) { return abs(loc1->alt - loc2->alt); } long get_bearing(struct Location *loc1, struct Location *loc2) { long off_x = loc2->lng - loc1->lng; long off_y = (loc2->lat - loc1->lat) * scaleLongUp; long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; if (bearing < 0) bearing += 36000; return bearing; }