/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define ARM_DELAY 10 // one secon #define DISARM_DELAY 10 // one secon #define LEVEL_DELAY 120 // twelve seconds #define AUTO_LEVEL_DELAY 250 // twentyfive seconds // called at 10hz void arm_motors() { static int arming_counter; // Arm motor output : Throttle down and full yaw right for more than 2 seconds if (g.rc_3.control_in == 0){ // full right if (g.rc_4.control_in > 4000) { if (arming_counter > AUTO_LEVEL_DELAY){ auto_level_counter = 255; arming_counter = 0; }else if (arming_counter == ARM_DELAY){ motor_armed = true; arming_counter = ARM_DELAY; // Remember Orientation // --------------------------- init_simple_bearing(); arming_counter++; } else{ arming_counter++; } // full left }else if (g.rc_4.control_in < -4000) { //Serial.print(arming_counter, DEC); if (arming_counter > LEVEL_DELAY){ //Serial.print("init"); imu.init_accel(); arming_counter = 0; }else if (arming_counter == DISARM_DELAY){ motor_armed = false; arming_counter = DISARM_DELAY; compass.save_offsets(); arming_counter++; }else{ arming_counter++; } // centered }else{ arming_counter = 0; } }else{ arming_counter = 0; } } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ void set_servos_4() { if (motor_armed == true && motor_auto_armed == true) { // creates the radio_out and pwm_out values output_motors_armed(); } else{ output_motors_disarmed(); } } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ //if (num++ > 25){ // num = 0; //Serial.print("kP: "); //Serial.println(g.pid_stabilize_roll.kP(),3); //*/ /* Serial.printf("yaw: %d, lat_e: %ld, lng_e: %ld, \tnlat: %ld, nlng: %ld,\tnrll: %ld, nptc: %ld, \tcx: %.2f, sy: %.2f, \ttber: %ld, \tnber: %ld\n", (int)(dcm.yaw_sensor / 100), lat_error, long_error, nav_lat, nav_lon, nav_roll, nav_pitch, cos_yaw_x, sin_yaw_y, target_bearing, nav_bearing); //*/ /* gcs_simple.write_byte(control_mode); //gcs_simple.write_int(motor_out[CH_1]); //gcs_simple.write_int(motor_out[CH_2]); //gcs_simple.write_int(motor_out[CH_3]); //gcs_simple.write_int(motor_out[CH_4]); gcs_simple.write_int(g.rc_3.servo_out); gcs_simple.write_int((int)(dcm.yaw_sensor / 100)); gcs_simple.write_int((int)nav_lat); gcs_simple.write_int((int)nav_lon); gcs_simple.write_int((int)nav_roll); gcs_simple.write_int((int)nav_pitch); //gcs_simple.write_int((int)(cos_yaw_x * 100)); //gcs_simple.write_int((int)(sin_yaw_y * 100)); gcs_simple.write_long(current_loc.lat); //28 gcs_simple.write_long(current_loc.lng); //32 gcs_simple.write_int((int)current_loc.alt); //34 gcs_simple.write_long(next_WP.lat); gcs_simple.write_long(next_WP.lng); gcs_simple.write_int((int)next_WP.alt); //44 gcs_simple.write_int((int)(target_bearing / 100)); gcs_simple.write_int((int)(nav_bearing / 100)); gcs_simple.write_int((int)(nav_yaw / 100)); if(altitude_sensor == BARO){ gcs_simple.write_int((int)g.pid_baro_throttle.get_integrator()); }else{ gcs_simple.write_int((int)g.pid_sonar_throttle.get_integrator()); } gcs_simple.write_int(g.throttle_cruise); gcs_simple.write_int(g.throttle_cruise); //24 gcs_simple.flush(10); // Message ID //*/ //Serial.printf("\n tb %d\n", (int)(target_bearing / 100)); //Serial.printf("\n nb %d\n", (int)(nav_bearing / 100)); //Serial.printf("\n dcm %d\n", (int)(dcm.yaw_sensor / 100)); /*Serial.printf("a %ld, e %ld, i %d, t %d, b %4.2f\n", current_loc.alt, altitude_error, (int)g.pid_baro_throttle.get_integrator(), nav_throttle, angle_boost()); */ //}