/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // UAVCAN GPS driver // #include #if HAL_WITH_UAVCAN #include "AP_GPS_UAVCAN.h" #include #include #include #include #include extern const AP_HAL::HAL& hal; #define debug_gps_uavcan(level_debug, can_driver, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) { printf(fmt, ##args); }} while (0) UC_REGISTRY_BINDER(FixCb, uavcan::equipment::gnss::Fix); UC_REGISTRY_BINDER(AuxCb, uavcan::equipment::gnss::Auxiliary); AP_GPS_UAVCAN::DetectedModules AP_GPS_UAVCAN::_detected_modules[] = {0}; HAL_Semaphore AP_GPS_UAVCAN::_sem_registry; // Member Methods AP_GPS_UAVCAN::AP_GPS_UAVCAN(AP_GPS &_gps, AP_GPS::GPS_State &_state) : AP_GPS_Backend(_gps, _state, nullptr) {} AP_GPS_UAVCAN::~AP_GPS_UAVCAN() { if (take_registry()) { _detected_modules[_detected_module].driver = nullptr; give_registry(); } } void AP_GPS_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan) { if (ap_uavcan == nullptr) { return; } auto* node = ap_uavcan->get_node(); uavcan::Subscriber *gnss_fix; gnss_fix = new uavcan::Subscriber(*node); const int gnss_fix_start_res = gnss_fix->start(FixCb(ap_uavcan, &handle_fix_msg_trampoline)); if (gnss_fix_start_res < 0) { AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r"); return; } uavcan::Subscriber *gnss_aux; gnss_aux = new uavcan::Subscriber(*node); const int gnss_aux_start_res = gnss_aux->start(AuxCb(ap_uavcan, &handle_aux_msg_trampoline)); if (gnss_aux_start_res < 0) { AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r"); return; } } bool AP_GPS_UAVCAN::take_registry() { return _sem_registry.take(HAL_SEMAPHORE_BLOCK_FOREVER); } void AP_GPS_UAVCAN::give_registry() { _sem_registry.give(); } AP_GPS_Backend* AP_GPS_UAVCAN::probe(AP_GPS &_gps, AP_GPS::GPS_State &_state) { if (!take_registry()) { return nullptr; } AP_GPS_UAVCAN* backend = nullptr; for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_uavcan != nullptr) { backend = new AP_GPS_UAVCAN(_gps, _state); if (backend == nullptr) { debug_gps_uavcan(2, _detected_modules[i].ap_uavcan->get_driver_index(), "Failed to register UAVCAN GPS Node %d on Bus %d\n", _detected_modules[i].node_id, _detected_modules[i].ap_uavcan->get_driver_index()); } else { _detected_modules[i].driver = backend; backend->_detected_module = i; debug_gps_uavcan(2, _detected_modules[i].ap_uavcan->get_driver_index(), "Registered UAVCAN GPS Node %d on Bus %d\n", _detected_modules[i].node_id, _detected_modules[i].ap_uavcan->get_driver_index()); } break; } } give_registry(); return backend; } AP_GPS_UAVCAN* AP_GPS_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id) { if (ap_uavcan == nullptr) { return nullptr; } for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[i].driver != nullptr && _detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) { return _detected_modules[i].driver; } } bool already_detected = false; // Check if there's an empty spot for possible registeration for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) { // Already Detected already_detected = true; break; } } if (!already_detected) { for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[i].ap_uavcan == nullptr) { _detected_modules[i].ap_uavcan = ap_uavcan; _detected_modules[i].node_id = node_id; break; } } } return nullptr; } void AP_GPS_UAVCAN::handle_fix_msg(const FixCb &cb) { bool process = false; WITH_SEMAPHORE(sem); if (cb.msg->status == uavcan::equipment::gnss::Fix::STATUS_NO_FIX) { interim_state.status = AP_GPS::GPS_Status::NO_FIX; } else { if (cb.msg->status == uavcan::equipment::gnss::Fix::STATUS_TIME_ONLY) { interim_state.status = AP_GPS::GPS_Status::NO_FIX; } else if (cb.msg->status == uavcan::equipment::gnss::Fix::STATUS_2D_FIX) { interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_2D; process = true; } else if (cb.msg->status == uavcan::equipment::gnss::Fix::STATUS_3D_FIX) { interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D; process = true; } if (cb.msg->gnss_time_standard == uavcan::equipment::gnss::Fix::GNSS_TIME_STANDARD_UTC) { uint64_t epoch_ms = uavcan::UtcTime(cb.msg->gnss_timestamp).toUSec(); epoch_ms /= 1000; uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC; interim_state.time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK); interim_state.time_week_ms = (uint32_t)(gps_ms - (interim_state.time_week) * AP_MSEC_PER_WEEK); } } if (process) { Location loc = { }; loc.lat = cb.msg->latitude_deg_1e8 / 10; loc.lng = cb.msg->longitude_deg_1e8 / 10; loc.alt = cb.msg->height_msl_mm / 10; interim_state.location = loc; interim_state.location.options = 0; if (!uavcan::isNaN(cb.msg->ned_velocity[0])) { Vector3f vel(cb.msg->ned_velocity[0], cb.msg->ned_velocity[1], cb.msg->ned_velocity[2]); interim_state.velocity = vel; interim_state.ground_speed = norm(vel.x, vel.y); interim_state.ground_course = wrap_360(degrees(atan2f(vel.y, vel.x))); interim_state.have_vertical_velocity = true; } else { interim_state.have_vertical_velocity = false; } float pos_cov[9]; cb.msg->position_covariance.unpackSquareMatrix(pos_cov); if (!uavcan::isNaN(pos_cov[8])) { if (pos_cov[8] > 0) { interim_state.vertical_accuracy = sqrtf(pos_cov[8]); interim_state.have_vertical_accuracy = true; } else { interim_state.have_vertical_accuracy = false; } } else { interim_state.have_vertical_accuracy = false; } const float horizontal_pos_variance = MAX(pos_cov[0], pos_cov[4]); if (!uavcan::isNaN(horizontal_pos_variance)) { if (horizontal_pos_variance > 0) { interim_state.horizontal_accuracy = sqrtf(horizontal_pos_variance); interim_state.have_horizontal_accuracy = true; } else { interim_state.have_horizontal_accuracy = false; } } else { interim_state.have_horizontal_accuracy = false; } float vel_cov[9]; cb.msg->velocity_covariance.unpackSquareMatrix(vel_cov); if (!uavcan::isNaN(vel_cov[0])) { interim_state.speed_accuracy = sqrtf((vel_cov[0] + vel_cov[4] + vel_cov[8]) / 3.0); interim_state.have_speed_accuracy = true; } else { interim_state.have_speed_accuracy = false; } interim_state.num_sats = cb.msg->sats_used; } else { interim_state.have_vertical_velocity = false; interim_state.have_vertical_accuracy = false; interim_state.have_horizontal_accuracy = false; interim_state.have_speed_accuracy = false; interim_state.num_sats = 0; } interim_state.last_gps_time_ms = AP_HAL::millis(); _new_data = true; } void AP_GPS_UAVCAN::handle_aux_msg(const AuxCb &cb) { WITH_SEMAPHORE(sem); if (!uavcan::isNaN(cb.msg->hdop)) { interim_state.hdop = cb.msg->hdop * 100.0; } if (!uavcan::isNaN(cb.msg->vdop)) { interim_state.vdop = cb.msg->vdop * 100.0; } } void AP_GPS_UAVCAN::handle_fix_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const FixCb &cb) { if (take_registry()) { AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id); if (driver != nullptr) { driver->handle_fix_msg(cb); } give_registry(); } } void AP_GPS_UAVCAN::handle_aux_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const AuxCb &cb) { if (take_registry()) { AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id); if (driver != nullptr) { driver->handle_aux_msg(cb); } give_registry(); } } // Consume new data and mark it received bool AP_GPS_UAVCAN::read(void) { WITH_SEMAPHORE(sem); if (_new_data) { _new_data = false; state = interim_state; return true; } return false; } #endif // HAL_WITH_UAVCAN