// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- byte failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling void init_rc_in() { // set rc channel ranges g.rc_1.set_angle(4500); g.rc_2.set_angle(4500); g.rc_3.set_range(0,1000); g.rc_3.scale_output = .9; g.rc_4.set_angle(4500); g.rc_1.set_type(RC_CHANNEL_ANGLE_RAW); g.rc_2.set_type(RC_CHANNEL_ANGLE_RAW); g.rc_4.set_type(RC_CHANNEL_ANGLE_RAW); // set rc dead zones g.rc_1.dead_zone = 60; // 60 = .6 degrees g.rc_2.dead_zone = 60; g.rc_3.dead_zone = 60; g.rc_4.dead_zone = 500; //set auxiliary ranges g.rc_5.set_range(0,1000); g.rc_5.set_filter(false); g.rc_6.set_range(0,1000); g.rc_7.set_range(0,1000); g.rc_8.set_range(0,1000); #if CHANNEL_6_TUNING == CH6_STABLIZE_KD g.rc_6.set_range(0,300); #elif CHANNEL_6_TUNING == CH6_BARO_KP g.rc_6.set_range(0,500); #elif CHANNEL_6_TUNING == CH6_BARO_KD g.rc_6.set_range(0,500); #elif CHANNEL_6_TUNING == CH6_Y6_SCALING g.rc_6.set_range(800,1000); #endif //catch bad RC_3 min values } void init_rc_out() { #if ARM_AT_STARTUP == 1 motor_armed = 1; #endif APM_RC.Init(); // APM Radio initialization // fix for crazy output OCR1B = 0xFFFF; // PB6, OUT3 OCR1C = 0xFFFF; // PB7, OUT4 OCR5B = 0xFFFF; // PL4, OUT1 OCR5C = 0xFFFF; // PL5, OUT2 OCR4B = 0xFFFF; // PH4, OUT6 OCR4C = 0xFFFF; // PH5, OUT5 // don't fuss if we are calibrating if(g.esc_calibrate == 1) return; if(g.rc_3.radio_min <= 1200){ output_min(); } for(byte i = 0; i < 5; i++){ delay(20); read_radio(); } // sanity check if(g.rc_3.radio_min >= 1300){ g.rc_3.radio_min = g.rc_3.radio_in; output_min(); } } void output_min() { APM_RC.OutputCh(CH_1, g.rc_3.radio_min); // Initialization of servo outputs APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min); } void read_radio() { g.rc_1.set_pwm(APM_RC.InputCh(CH_1)); g.rc_2.set_pwm(APM_RC.InputCh(CH_2)); g.rc_3.set_pwm(APM_RC.InputCh(CH_3)); g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); g.rc_5.set_pwm(APM_RC.InputCh(CH_5)); g.rc_6.set_pwm(APM_RC.InputCh(CH_6)); g.rc_7.set_pwm(APM_RC.InputCh(CH_7)); g.rc_8.set_pwm(APM_RC.InputCh(CH_8)); // limit our input to 800 so we can still pitch and roll g.rc_3.control_in = min(g.rc_3.control_in, 800); //throttle_failsafe(g.rc_3.radio_in); /* Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in); */ } void throttle_failsafe(uint16_t pwm) { if(g.throttle_fs_enabled == 0) return; //check for failsafe and debounce funky reads // ------------------------------------------ if (pwm < g.throttle_fs_value){ // we detect a failsafe from radio // throttle has dropped below the mark failsafeCounter++; if (failsafeCounter == 9){ SendDebug("MSG FS ON "); SendDebugln(pwm, DEC); }else if(failsafeCounter == 10) { ch3_failsafe = true; //set_failsafe(true); //failsafeCounter = 10; }else if (failsafeCounter > 10){ failsafeCounter = 11; } }else if(failsafeCounter > 0){ // we are no longer in failsafe condition // but we need to recover quickly failsafeCounter--; if (failsafeCounter > 3){ failsafeCounter = 3; } if (failsafeCounter == 1){ SendDebug("MSG FS OFF "); SendDebugln(pwm, DEC); }else if(failsafeCounter == 0) { ch3_failsafe = false; //set_failsafe(false); //failsafeCounter = -1; }else if (failsafeCounter <0){ failsafeCounter = -1; } } } void trim_radio() { for (byte i = 0; i < 30; i++){ read_radio(); } g.rc_1.trim(); // roll g.rc_2.trim(); // pitch g.rc_4.trim(); // yaw g.rc_1.save_eeprom(); g.rc_2.save_eeprom(); g.rc_4.save_eeprom(); } void trim_yaw() { for (byte i = 0; i < 30; i++){ read_radio(); } g.rc_4.trim(); // yaw }