// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // This is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License as published by the // Free Software Foundation; either version 2.1 of the License, or (at // your option) any later version. // // total up and check overflow // check size of group var_info /// @file AP_Param.cpp /// @brief The AP variable store. #include #include #include #include #include // #define ENABLE_FASTSERIAL_DEBUG #ifdef ENABLE_FASTSERIAL_DEBUG # define serialDebug(fmt, args ...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); delay(0); } while(0) #else # define serialDebug(fmt, args ...) #endif // some useful progmem macros #define PGM_UINT8(addr) pgm_read_byte((const prog_char *)addr) #define PGM_UINT16(addr) pgm_read_word((const uint16_t *)addr) #define PGM_FLOAT(addr) pgm_read_float((const float *)addr) #define PGM_POINTER(addr) pgm_read_pointer((const void *)addr) // the 'GROUP_ID' of a element of a group is the 18 bit identifier // used to distinguish between this element of the group and other // elements of the same group. It is calculated using a bit shift per // level of nesting, so the first level of nesting gets 6 bits the 2nd // level gets the next 6 bits, and the 3rd level gets the last 6 // bits. This limits groups to having at most 64 elements. #define GROUP_ID(grpinfo, base, i, shift) ((base)+(((uint16_t)PGM_UINT8(&grpinfo[i].idx))<<(shift))) // Note about AP_Vector3f handling. // The code has special cases for AP_Vector3f to allow it to be viewed // as both a single 3 element vector and as a set of 3 AP_Float // variables. This is done to make it possible for MAVLink to see // vectors as parameters, which allows users to save their compass // offsets in MAVLink parameter files. The code involves quite a few // special cases which could be generalised to any vector/matrix type // if we end up needing this behaviour for other than AP_Vector3f // static member variables for AP_Param. // // max EEPROM write size. This is usually less than the physical // size as only part of the EEPROM is reserved for parameters uint16_t AP_Param::_eeprom_size; // number of rows in the _var_info[] table uint8_t AP_Param::_num_vars; // storage and naming information about all types that can be saved const AP_Param::Info *AP_Param::_var_info; // write to EEPROM, checking each byte to avoid writing // bytes that are already correct void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size) { const uint8_t *b = (const uint8_t *)ptr; while (size--) { uint8_t v = eeprom_read_byte((const uint8_t *)(uintptr_t)ofs); if (v != *b) { eeprom_write_byte((uint8_t *)(uintptr_t)ofs, *b); } b++; ofs++; } } // write a sentinal value at the given offset void AP_Param::write_sentinal(uint16_t ofs) { struct Param_header phdr; phdr.type = _sentinal_type; phdr.key = _sentinal_key; phdr.group_element = _sentinal_group; eeprom_write_check(&phdr, ofs, sizeof(phdr)); } // erase all EEPROM variables by re-writing the header and adding // a sentinal void AP_Param::erase_all(void) { struct EEPROM_header hdr; serialDebug("erase_all"); // write the header hdr.magic[0] = k_EEPROM_magic0; hdr.magic[1] = k_EEPROM_magic1; hdr.revision = k_EEPROM_revision; hdr.spare = 0; eeprom_write_check(&hdr, 0, sizeof(hdr)); // add a sentinal directly after the header write_sentinal(sizeof(struct EEPROM_header)); } // validate a group info table bool AP_Param::check_group_info(const struct AP_Param::GroupInfo * group_info, uint16_t * total_size, uint8_t group_shift) { uint8_t type; int8_t max_idx = -1; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { // a nested group const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); if (group_shift + _group_level_shift >= _group_bits) { // double nesting of groups is not allowed return false; } if (ginfo == NULL || !check_group_info(ginfo, total_size, group_shift + _group_level_shift)) { return false; } continue; } #endif // AP_NESTED_GROUPS_ENABLED uint8_t idx = PGM_UINT8(&group_info[i].idx); if (idx >= (1<<_group_level_shift)) { // passed limit on table size return false; } if ((int8_t)idx <= max_idx) { // the indexes must be in increasing order return false; } max_idx = (int8_t)idx; uint8_t size = type_size((enum ap_var_type)type); if (size == 0) { // not a valid type return false; } (*total_size) += size + sizeof(struct Param_header); } return true; } // check for duplicate key values bool AP_Param::duplicate_key(uint8_t vindex, uint8_t key) { for (uint8_t i=vindex+1; i<_num_vars; i++) { uint8_t key2 = PGM_UINT8(&_var_info[i].key); if (key2 == key) { // no duplicate keys allowed return true; } } return false; } // validate the _var_info[] table bool AP_Param::check_var_info(void) { uint16_t total_size = sizeof(struct EEPROM_header); for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); uint8_t key = PGM_UINT8(&_var_info[i].key); if (type == AP_PARAM_GROUP) { if (i == 0) { // first element can't be a group, for first() call return false; } const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); if (group_info == NULL || !check_group_info(group_info, &total_size, 0)) { return false; } } else { uint8_t size = type_size((enum ap_var_type)type); if (size == 0) { // not a valid type - the top level list can't contain // AP_PARAM_NONE return false; } total_size += size + sizeof(struct Param_header); } if (duplicate_key(i, key)) { return false; } } // we no longer check if total_size is larger than _eeprom_size, // as we allow for more variables than could fit, relying on not // saving default values return true; } // setup the _var_info[] table bool AP_Param::setup(const struct AP_Param::Info *info, uint16_t eeprom_size) { struct EEPROM_header hdr; uint8_t i; _eeprom_size = eeprom_size; _var_info = info; for (i=0; PGM_UINT8(&info[i].type) != AP_PARAM_NONE; i++) ; _num_vars = i; if (!check_var_info()) { return false; } serialDebug("setup %u vars", (unsigned)_num_vars); // check the header eeprom_read_block(&hdr, 0, sizeof(hdr)); if (hdr.magic[0] != k_EEPROM_magic0 || hdr.magic[1] != k_EEPROM_magic1 || hdr.revision != k_EEPROM_revision) { // header doesn't match. We can't recover any variables. Wipe // the header and setup the sentinal directly after the header serialDebug("bad header in setup - erasing"); erase_all(); } return true; } // check if AP_Param has been initialised bool AP_Param::initialised(void) { return _var_info != NULL; } // find the info structure given a header and a group_info table // return the Info structure and a pointer to the variables storage const struct AP_Param::Info *AP_Param::find_by_header_group(struct Param_header phdr, void **ptr, uint8_t vindex, const struct GroupInfo *group_info, uint8_t group_base, uint8_t group_shift) { uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { // a nested group if (group_shift + _group_level_shift >= _group_bits) { // too deeply nested - this should have been caught by // setup() ! return NULL; } const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); const struct AP_Param::Info *ret = find_by_header_group(phdr, ptr, vindex, ginfo, GROUP_ID(group_info, group_base, i, group_shift), group_shift + _group_level_shift); if (ret != NULL) { return ret; } continue; } #endif // AP_NESTED_GROUPS_ENABLED if (GROUP_ID(group_info, group_base, i, group_shift) == phdr.group_element) { // found a group element *ptr = (void*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset)); return &_var_info[vindex]; } } return NULL; } // find the info structure given a header // return the Info structure and a pointer to the variables storage const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr) { // loop over all named variables for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); uint8_t key = PGM_UINT8(&_var_info[i].key); if (key != phdr.key) { // not the right key continue; } if (type != AP_PARAM_GROUP) { // if its not a group then we are done *ptr = (void*)PGM_POINTER(&_var_info[i].ptr); return &_var_info[i]; } const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); return find_by_header_group(phdr, ptr, i, group_info, 0, 0); } return NULL; } // find the info structure for a variable in a group const struct AP_Param::Info *AP_Param::find_var_info_group(const struct GroupInfo * group_info, uint8_t vindex, uint8_t group_base, uint8_t group_shift, uint32_t * group_element, const struct GroupInfo **group_ret, uint8_t * idx) { uintptr_t base = PGM_POINTER(&_var_info[vindex].ptr); uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { uintptr_t ofs = PGM_POINTER(&group_info[i].offset); #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); // a nested group if (group_shift + _group_level_shift >= _group_bits) { // too deeply nested - this should have been caught by // setup() ! return NULL; } const struct AP_Param::Info *info; info = find_var_info_group(ginfo, vindex, GROUP_ID(group_info, group_base, i, group_shift), group_shift + _group_level_shift, group_element, group_ret, idx); if (info != NULL) { return info; } } else // Forgive the poor formatting - if continues below. #endif // AP_NESTED_GROUPS_ENABLED if ((uintptr_t) this == base + ofs) { *group_element = GROUP_ID(group_info, group_base, i, group_shift); *group_ret = &group_info[i]; *idx = 0; return &_var_info[vindex]; } else if (type == AP_PARAM_VECTOR3F && (base+ofs+sizeof(float) == (uintptr_t) this || base+ofs+2*sizeof(float) == (uintptr_t) this)) { // we are inside a Vector3f. We need to work out which // element of the vector the current object refers to. *idx = (((uintptr_t) this) - (base+ofs))/sizeof(float); *group_element = GROUP_ID(group_info, group_base, i, group_shift); *group_ret = &group_info[i]; return &_var_info[vindex]; } } return NULL; } // find the info structure for a variable const struct AP_Param::Info *AP_Param::find_var_info(uint32_t * group_element, const struct GroupInfo ** group_ret, uint8_t * idx) { for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); uintptr_t base = PGM_POINTER(&_var_info[i].ptr); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); const struct AP_Param::Info *info; info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx); if (info != NULL) { return info; } } else if (base == (uintptr_t) this) { *group_element = 0; *group_ret = NULL; *idx = 0; return &_var_info[i]; } else if (type == AP_PARAM_VECTOR3F && (base+sizeof(float) == (uintptr_t) this || base+2*sizeof(float) == (uintptr_t) this)) { // we are inside a Vector3f. Work out which element we are // referring to. *idx = (((uintptr_t) this) - base)/sizeof(float); *group_element = 0; *group_ret = NULL; return &_var_info[i]; } } return NULL; } // return the storage size for a AP_PARAM_* type const uint8_t AP_Param::type_size(enum ap_var_type type) { switch (type) { case AP_PARAM_NONE: case AP_PARAM_GROUP: return 0; case AP_PARAM_INT8: return 1; case AP_PARAM_INT16: return 2; case AP_PARAM_INT32: return 4; case AP_PARAM_FLOAT: return 4; case AP_PARAM_VECTOR3F: return 3*4; case AP_PARAM_VECTOR6F: return 6*4; case AP_PARAM_MATRIX3F: return 3*3*4; } serialDebug("unknown type %u\n", type); return 0; } // scan the EEPROM looking for a given variable by header content // return true if found, along with the offset in the EEPROM where // the variable is stored // if not found return the offset of the sentinal, or bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); while (ofs < _eeprom_size) { eeprom_read_block(&phdr, (void *)(uintptr_t)ofs, sizeof(phdr)); if (phdr.type == target->type && phdr.key == target->key && phdr.group_element == target->group_element) { // found it *pofs = ofs; return true; } // note that this is an ||, not an &&, as this makes us more // robust to power off while adding a variable to EEPROM if (phdr.type == _sentinal_type || phdr.key == _sentinal_key || phdr.group_element == _sentinal_group) { // we've reached the sentinal *pofs = ofs; return false; } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } *pofs = ~0; serialDebug("scan past end of eeprom"); return false; } // add a X,Y,Z suffix to the name of a Vector3f element void AP_Param::add_vector3f_suffix(char *buffer, size_t buffer_size, uint8_t idx) { uint8_t len = strnlen(buffer, buffer_size); if ((size_t)(len+3) >= buffer_size) { // the suffix doesn't fit return; } buffer[len] = '_'; if (idx == 0) { buffer[len+1] = 'X'; } else if (idx == 1) { buffer[len+1] = 'Y'; } else if (idx == 2) { buffer[len+1] = 'Z'; } buffer[len+2] = 0; } // Copy the variable's whole name to the supplied buffer. // // If the variable is a group member, prepend the group name. // void AP_Param::copy_name(char *buffer, size_t buffer_size, bool force_scalar) { uint32_t group_element; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); if (info == NULL) { *buffer = 0; serialDebug("no info found"); return; } strncpy_P(buffer, info->name, buffer_size); if (ginfo != NULL) { uint8_t len = strnlen(buffer, buffer_size); if (len < buffer_size) { strncpy_P(&buffer[len], ginfo->name, buffer_size-len); } if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&ginfo->type)) { // the caller wants a specific element in a Vector3f add_vector3f_suffix(buffer, buffer_size, idx); } } else if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&info->type)) { add_vector3f_suffix(buffer, buffer_size, idx); } } // Find a variable by name in a group AP_Param * AP_Param::find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype) { uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); AP_Param *ap = find_group(name, vindex, ginfo, ptype); if (ap != NULL) { return ap; } } else #endif // AP_NESTED_GROUPS_ENABLED if (strcasecmp_P(name, group_info[i].name) == 0) { uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr); *ptype = (enum ap_var_type)type; return (AP_Param *)(p + PGM_POINTER(&group_info[i].offset)); } else if (type == AP_PARAM_VECTOR3F) { // special case for finding Vector3f elements uint8_t suffix_len = strlen_P(group_info[i].name); if (strncmp_P(name, group_info[i].name, suffix_len) == 0 && name[suffix_len] == '_' && name[suffix_len+1] != 0 && name[suffix_len+2] == 0) { uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr); AP_Float *v = (AP_Float *)(p + PGM_POINTER(&group_info[i].offset)); *ptype = AP_PARAM_FLOAT; switch (name[suffix_len+1]) { case 'X': return (AP_Float *)&v[0]; case 'Y': return (AP_Float *)&v[1]; case 'Z': return (AP_Float *)&v[2]; } } } } return NULL; } // Find a variable by name. // AP_Param * AP_Param::find(const char *name, enum ap_var_type *ptype) { for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); if (type == AP_PARAM_GROUP) { uint8_t len = strnlen_P(_var_info[i].name, AP_MAX_NAME_SIZE); if (strncmp_P(name, _var_info[i].name, len) != 0) { continue; } const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); AP_Param *ap = find_group(name + len, i, group_info, ptype); if (ap != NULL) { return ap; } // we continue looking as we want to allow top level // parameter to have the same prefix name as group // parameters, for example CAM_P_G } else if (strcasecmp_P(name, _var_info[i].name) == 0) { *ptype = (enum ap_var_type)type; return (AP_Param *)PGM_POINTER(&_var_info[i].ptr); } } return NULL; } // Find a variable by index. Note that this is quite slow. // AP_Param * AP_Param::find_by_index(uint16_t idx, enum ap_var_type *ptype) { ParamToken token; AP_Param *ap; uint16_t count=0; for (ap=AP_Param::first(&token, ptype); ap && count < idx; ap=AP_Param::next_scalar(&token, ptype)) { count++; } return ap; } // Save the variable to EEPROM, if supported // bool AP_Param::save(void) { uint32_t group_element = 0; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); const AP_Param *ap; if (info == NULL) { // we don't have any info on how to store it return false; } struct Param_header phdr; // create the header we will use to store the variable if (ginfo != NULL) { phdr.type = PGM_UINT8(&ginfo->type); } else { phdr.type = PGM_UINT8(&info->type); } phdr.key = PGM_UINT8(&info->key); phdr.group_element = group_element; ap = this; if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) { // only vector3f can have non-zero idx for now return false; } if (idx != 0) { ap = (const AP_Param *)((uintptr_t)ap) - (idx*sizeof(float)); } // scan EEPROM to find the right location uint16_t ofs; if (scan(&phdr, &ofs)) { // found an existing copy of the variable eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); return true; } if (ofs == (uint16_t) ~0) { return false; } // if the value is the default value then don't save if (phdr.type <= AP_PARAM_FLOAT) { float v1 = cast_to_float((enum ap_var_type)phdr.type); float v2; if (ginfo != NULL) { v2 = PGM_FLOAT(&ginfo->def_value); } else { v2 = PGM_FLOAT(&info->def_value); } if (v1 == v2) { return true; } if (phdr.type != AP_PARAM_INT32 && (fabs(v1-v2) < 0.0001*fabs(v1))) { // for other than 32 bit integers, we accept values within // 0.01 percent of the current value as being the same return true; } } if (ofs+type_size((enum ap_var_type)phdr.type)+2*sizeof(phdr) >= _eeprom_size) { // we are out of room for saving variables return false; } // write a new sentinal, then the data, then the header write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type)); eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); eeprom_write_check(&phdr, ofs, sizeof(phdr)); return true; } // Load the variable from EEPROM, if supported // bool AP_Param::load(void) { uint32_t group_element = 0; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); if (info == NULL) { // we don't have any info on how to load it return false; } struct Param_header phdr; // create the header we will use to match the variable if (ginfo != NULL) { phdr.type = PGM_UINT8(&ginfo->type); } else { phdr.type = PGM_UINT8(&info->type); } phdr.key = PGM_UINT8(&info->key); phdr.group_element = group_element; // scan EEPROM to find the right location uint16_t ofs; if (!scan(&phdr, &ofs)) { // if the value isn't stored in EEPROM then set the default value if (ginfo != NULL) { uintptr_t base = PGM_POINTER(&info->ptr); set_value((enum ap_var_type)phdr.type, (void*)(base + PGM_UINT16(&ginfo->offset)), PGM_FLOAT(&ginfo->def_value)); } else { set_value((enum ap_var_type)phdr.type, (void*)PGM_POINTER(&info->ptr), PGM_FLOAT(&info->def_value)); } return false; } if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) { // only vector3f can have non-zero idx for now return false; } AP_Param *ap; ap = this; if (idx != 0) { ap = (AP_Param *)((uintptr_t)ap) - (idx*sizeof(float)); } // found it eeprom_read_block(ap, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type)); return true; } // set a AP_Param variable to a specified value void AP_Param::set_value(enum ap_var_type type, void *ptr, float def_value) { switch (type) { case AP_PARAM_INT8: ((AP_Int8 *)ptr)->set(def_value); break; case AP_PARAM_INT16: ((AP_Int16 *)ptr)->set(def_value); break; case AP_PARAM_INT32: ((AP_Int32 *)ptr)->set(def_value); break; case AP_PARAM_FLOAT: ((AP_Float *)ptr)->set(def_value); break; default: break; } } // load default values for scalars in a group void AP_Param::load_defaults_group(const struct GroupInfo *group_info, uintptr_t base) { uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (type == AP_PARAM_GROUP) { const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); load_defaults_group(ginfo, base); } else if (type <= AP_PARAM_FLOAT) { void *ptr = (void *)(base + PGM_UINT16(&group_info[i].offset)); set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&group_info[i].def_value)); } } } // load default values for all scalars void AP_Param::load_defaults(void) { for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); uintptr_t base = PGM_POINTER(&_var_info[i].ptr); load_defaults_group(group_info, base); } else if (type <= AP_PARAM_FLOAT) { void *ptr = (void*)PGM_POINTER(&_var_info[i].ptr); set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&_var_info[i].def_value)); } } } // Load all variables from EEPROM // bool AP_Param::load_all(void) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); while (ofs < _eeprom_size) { eeprom_read_block(&phdr, (void *)(uintptr_t)ofs, sizeof(phdr)); // note that this is an || not an && for robustness // against power off while adding a variable if (phdr.type == _sentinal_type || phdr.key == _sentinal_key || phdr.group_element == _sentinal_group) { // we've reached the sentinal return true; } const struct AP_Param::Info *info; void *ptr; info = find_by_header(phdr, &ptr); if (info != NULL) { eeprom_read_block(ptr, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type)); } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } // we didn't find the sentinal serialDebug("no sentinal in load_all"); return false; } // return the first variable in _var_info AP_Param *AP_Param::first(ParamToken *token, enum ap_var_type *ptype) { token->key = 0; token->group_element = 0; token->idx = 0; if (_num_vars == 0) { return NULL; } if (ptype != NULL) { *ptype = (enum ap_var_type)PGM_UINT8(&_var_info[0].type); } return (AP_Param *)(PGM_POINTER(&_var_info[0].ptr)); } /// Returns the next variable in a group, recursing into groups /// as needed AP_Param *AP_Param::next_group(uint8_t vindex, const struct GroupInfo *group_info, bool *found_current, uint8_t group_base, uint8_t group_shift, ParamToken *token, enum ap_var_type *ptype) { enum ap_var_type type; for (uint8_t i=0; (type=(enum ap_var_type)PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { // a nested group const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); AP_Param *ap; ap = next_group(vindex, ginfo, found_current, GROUP_ID(group_info, group_base, i, group_shift), group_shift + _group_level_shift, token, ptype); if (ap != NULL) { return ap; } } else #endif // AP_NESTED_GROUPS_ENABLED { if (*found_current) { // got a new one token->key = vindex; token->group_element = GROUP_ID(group_info, group_base, i, group_shift); token->idx = 0; if (ptype != NULL) { *ptype = type; } return (AP_Param*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset)); } if (GROUP_ID(group_info, group_base, i, group_shift) == token->group_element) { *found_current = true; if (type == AP_PARAM_VECTOR3F && token->idx < 3) { // return the next element of the vector as a // float token->idx++; if (ptype != NULL) { *ptype = AP_PARAM_FLOAT; } uintptr_t ofs = (uintptr_t)PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset); ofs += sizeof(float)*(token->idx-1); return (AP_Param *)ofs; } } } } return NULL; } /// Returns the next variable in _var_info, recursing into groups /// as needed AP_Param *AP_Param::next(ParamToken *token, enum ap_var_type *ptype) { uint8_t i = token->key; bool found_current = false; if (i >= _num_vars) { // illegal token return NULL; } enum ap_var_type type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type); // allow Vector3f to be seen as 3 variables. First as a vector, // then as 3 separate floats if (type == AP_PARAM_VECTOR3F && token->idx < 3) { token->idx++; if (ptype != NULL) { *ptype = AP_PARAM_FLOAT; } return (AP_Param *)(((token->idx-1)*sizeof(float))+(uintptr_t)PGM_POINTER(&_var_info[i].ptr)); } if (type != AP_PARAM_GROUP) { i++; found_current = true; } for (; i<_num_vars; i++) { type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); AP_Param *ap = next_group(i, group_info, &found_current, 0, 0, token, ptype); if (ap != NULL) { return ap; } } else { // found the next one token->key = i; token->group_element = 0; token->idx = 0; if (ptype != NULL) { *ptype = type; } return (AP_Param *)(PGM_POINTER(&_var_info[i].ptr)); } } return NULL; } /// Returns the next scalar in _var_info, recursing into groups /// as needed AP_Param *AP_Param::next_scalar(ParamToken *token, enum ap_var_type *ptype) { AP_Param *ap; enum ap_var_type type; while ((ap = next(token, &type)) != NULL && type > AP_PARAM_FLOAT) ; if (ap != NULL && ptype != NULL) { *ptype = type; } return ap; } /// cast a variable to a float given its type float AP_Param::cast_to_float(enum ap_var_type type) { switch (type) { case AP_PARAM_INT8: return ((AP_Int8 *)this)->cast_to_float(); case AP_PARAM_INT16: return ((AP_Int16 *)this)->cast_to_float(); case AP_PARAM_INT32: return ((AP_Int32 *)this)->cast_to_float(); case AP_PARAM_FLOAT: return ((AP_Float *)this)->cast_to_float(); default: return NAN; } } // print the value of all variables void AP_Param::show_all(void) { ParamToken token; AP_Param *ap; enum ap_var_type type; for (ap=AP_Param::first(&token, &type); ap; ap=AP_Param::next_scalar(&token, &type)) { char s[AP_MAX_NAME_SIZE+1]; ap->copy_name(s, sizeof(s), true); s[AP_MAX_NAME_SIZE] = 0; switch (type) { case AP_PARAM_INT8: Serial.printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int8 *)ap)->get()); break; case AP_PARAM_INT16: Serial.printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int16 *)ap)->get()); break; case AP_PARAM_INT32: Serial.printf_P(PSTR("%s: %ld\n"), s, (long)((AP_Int32 *)ap)->get()); break; case AP_PARAM_FLOAT: Serial.printf_P(PSTR("%s: %f\n"), s, ((AP_Float *)ap)->get()); break; default: break; } } }