#include "Copter.h" /* * High level calls to set and update flight modes logic for individual * flight modes is in control_acro.cpp, control_stabilize.cpp, etc */ /* constructor for Mode object */ Mode::Mode(void) : g(copter.g), g2(copter.g2), wp_nav(copter.wp_nav), loiter_nav(copter.loiter_nav), pos_control(copter.pos_control), inertial_nav(copter.inertial_nav), ahrs(copter.ahrs), attitude_control(copter.attitude_control), motors(copter.motors), channel_roll(copter.channel_roll), channel_pitch(copter.channel_pitch), channel_throttle(copter.channel_throttle), channel_yaw(copter.channel_yaw), G_Dt(copter.G_Dt) { }; // return the static controller object corresponding to supplied mode Mode *Copter::mode_from_mode_num(const Mode::Number mode) { Mode *ret = nullptr; switch (mode) { #if MODE_ACRO_ENABLED == ENABLED case Mode::Number::ACRO: ret = &mode_acro; break; #endif case Mode::Number::STABILIZE: ret = &mode_stabilize; break; case Mode::Number::ALT_HOLD: ret = &mode_althold; break; #if MODE_AUTO_ENABLED == ENABLED case Mode::Number::AUTO: ret = &mode_auto; break; #endif #if MODE_CIRCLE_ENABLED == ENABLED case Mode::Number::CIRCLE: ret = &mode_circle; break; #endif #if MODE_LOITER_ENABLED == ENABLED case Mode::Number::LOITER: ret = &mode_loiter; break; #endif #if MODE_GUIDED_ENABLED == ENABLED case Mode::Number::GUIDED: ret = &mode_guided; break; #endif case Mode::Number::LAND: ret = &mode_land; break; #if MODE_RTL_ENABLED == ENABLED case Mode::Number::RTL: ret = &mode_rtl; break; #endif #if MODE_DRIFT_ENABLED == ENABLED case Mode::Number::DRIFT: ret = &mode_drift; break; #endif #if MODE_SPORT_ENABLED == ENABLED case Mode::Number::SPORT: ret = &mode_sport; break; #endif #if MODE_FLIP_ENABLED == ENABLED case Mode::Number::FLIP: ret = &mode_flip; break; #endif #if AUTOTUNE_ENABLED == ENABLED case Mode::Number::AUTOTUNE: ret = &mode_autotune; break; #endif #if MODE_POSHOLD_ENABLED == ENABLED case Mode::Number::POSHOLD: ret = &mode_poshold; break; #endif #if MODE_BRAKE_ENABLED == ENABLED case Mode::Number::BRAKE: ret = &mode_brake; break; #endif #if MODE_THROW_ENABLED == ENABLED case Mode::Number::THROW: ret = &mode_throw; break; #endif #if HAL_ADSB_ENABLED case Mode::Number::AVOID_ADSB: ret = &mode_avoid_adsb; break; #endif #if MODE_GUIDED_NOGPS_ENABLED == ENABLED case Mode::Number::GUIDED_NOGPS: ret = &mode_guided_nogps; break; #endif #if MODE_SMARTRTL_ENABLED == ENABLED case Mode::Number::SMART_RTL: ret = &mode_smartrtl; break; #endif #if OPTFLOW == ENABLED case Mode::Number::FLOWHOLD: ret = (Mode *)g2.mode_flowhold_ptr; break; #endif #if MODE_FOLLOW_ENABLED == ENABLED case Mode::Number::FOLLOW: ret = &mode_follow; break; #endif #if MODE_ZIGZAG_ENABLED == ENABLED case Mode::Number::ZIGZAG: ret = &mode_zigzag; break; #endif #if MODE_SYSTEMID_ENABLED == ENABLED case Mode::Number::SYSTEMID: ret = (Mode *)g2.mode_systemid_ptr; break; #endif #if MODE_AUTOROTATE_ENABLED == ENABLED case Mode::Number::AUTOROTATE: ret = &mode_autorotate; break; #endif default: break; } return ret; } // called when an attempt to change into a mode is unsuccessful: void Copter::mode_change_failed(const Mode *mode, const char *reason) { gcs().send_text(MAV_SEVERITY_WARNING, "Mode change to %s failed: %s", mode->name(), reason); AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode->mode_number())); } // set_mode - change flight mode and perform any necessary initialisation // optional force parameter used to force the flight mode change (used only first time mode is set) // returns true if mode was successfully set // ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately bool Copter::set_mode(Mode::Number mode, ModeReason reason) { // return immediately if we are already in the desired mode if (mode == flightmode->mode_number()) { control_mode_reason = reason; return true; } Mode *new_flightmode = mode_from_mode_num((Mode::Number)mode); if (new_flightmode == nullptr) { gcs().send_text(MAV_SEVERITY_WARNING,"No such mode"); AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode)); return false; } bool ignore_checks = !motors->armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform #if FRAME_CONFIG == HELI_FRAME // do not allow helis to enter a non-manual throttle mode if the // rotor runup is not complete if (!ignore_checks && !new_flightmode->has_manual_throttle() && (motors->get_spool_state() == AP_Motors::SpoolState::SPOOLING_UP || motors->get_spool_state() == AP_Motors::SpoolState::SPOOLING_DOWN)) { #if MODE_AUTOROTATE_ENABLED == ENABLED //if the mode being exited is the autorotation mode allow mode change despite rotor not being at //full speed. This will reduce altitude loss on bail-outs back to non-manual throttle modes bool in_autorotation_check = (flightmode != &mode_autorotate || new_flightmode != &mode_autorotate); #else bool in_autorotation_check = false; #endif if (!in_autorotation_check) { mode_change_failed(new_flightmode, "runup not complete"); return false; } } #endif #if FRAME_CONFIG != HELI_FRAME // ensure vehicle doesn't leap off the ground if a user switches // into a manual throttle mode from a non-manual-throttle mode // (e.g. user arms in guided, raises throttle to 1300 (not enough to // trigger auto takeoff), then switches into manual): bool user_throttle = new_flightmode->has_manual_throttle(); #if MODE_DRIFT_ENABLED == ENABLED if (new_flightmode == &mode_drift) { user_throttle = true; } #endif if (!ignore_checks && ap.land_complete && user_throttle && !copter.flightmode->has_manual_throttle() && new_flightmode->get_pilot_desired_throttle() > copter.get_non_takeoff_throttle()) { mode_change_failed(new_flightmode, "throttle too high"); return false; } #endif if (!ignore_checks && new_flightmode->requires_GPS() && !copter.position_ok()) { mode_change_failed(new_flightmode, "requires position"); return false; } // check for valid altitude if old mode did not require it but new one does // we only want to stop changing modes if it could make things worse if (!ignore_checks && !copter.ekf_alt_ok() && flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle()) { mode_change_failed(new_flightmode, "need alt estimate"); return false; } if (!new_flightmode->init(ignore_checks)) { mode_change_failed(new_flightmode, "initialisation failed"); return false; } // perform any cleanup required by previous flight mode exit_mode(flightmode, new_flightmode); // store previous flight mode (only used by tradeheli's autorotation) prev_control_mode = flightmode->mode_number(); // update flight mode flightmode = new_flightmode; control_mode_reason = reason; logger.Write_Mode((uint8_t)flightmode->mode_number(), reason); gcs().send_message(MSG_HEARTBEAT); #if HAL_ADSB_ENABLED adsb.set_is_auto_mode((mode == Mode::Number::AUTO) || (mode == Mode::Number::RTL) || (mode == Mode::Number::GUIDED)); #endif #if AC_FENCE == ENABLED // pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover // this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe) // but it should be harmless to disable the fence temporarily in these situations as well fence.manual_recovery_start(); #endif #if CAMERA == ENABLED camera.set_is_auto_mode(flightmode->mode_number() == Mode::Number::AUTO); #endif // update notify object notify_flight_mode(); // return success return true; } bool Copter::set_mode(const uint8_t new_mode, const ModeReason reason) { static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number"); #ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE if (reason == ModeReason::GCS_COMMAND && copter.failsafe.radio) { // don't allow mode changes while in radio failsafe return false; } #endif return copter.set_mode(static_cast(new_mode), reason); } // update_flight_mode - calls the appropriate attitude controllers based on flight mode // called at 100hz or more void Copter::update_flight_mode() { surface_tracking.invalidate_for_logging(); // invalidate surface tracking alt, flight mode will set to true if used flightmode->run(); } // exit_mode - high level call to organise cleanup as a flight mode is exited void Copter::exit_mode(Mode *&old_flightmode, Mode *&new_flightmode) { // smooth throttle transition when switching from manual to automatic flight modes if (old_flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle() && motors->armed() && !ap.land_complete) { // this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle set_accel_throttle_I_from_pilot_throttle(); } // cancel any takeoffs in progress old_flightmode->takeoff_stop(); // perform cleanup required for each flight mode old_flightmode->exit(); #if FRAME_CONFIG == HELI_FRAME // firmly reset the flybar passthrough to false when exiting acro mode. if (old_flightmode == &mode_acro) { attitude_control->use_flybar_passthrough(false, false); motors->set_acro_tail(false); } // if we are changing from a mode that did not use manual throttle, // stab col ramp value should be pre-loaded to the correct value to avoid a twitch // heli_stab_col_ramp should really only be active switching between Stabilize and Acro modes if (!old_flightmode->has_manual_throttle()){ if (new_flightmode == &mode_stabilize){ input_manager.set_stab_col_ramp(1.0); } else if (new_flightmode == &mode_acro){ input_manager.set_stab_col_ramp(0.0); } } #endif //HELI_FRAME } // notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device void Copter::notify_flight_mode() { AP_Notify::flags.autopilot_mode = flightmode->is_autopilot(); AP_Notify::flags.flight_mode = (uint8_t)flightmode->mode_number(); notify.set_flight_mode_str(flightmode->name4()); } // get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle // returns desired angle in centi-degrees void Mode::get_pilot_desired_lean_angles(float &roll_out, float &pitch_out, float angle_max, float angle_limit) const { // throttle failsafe check if (copter.failsafe.radio || !copter.ap.rc_receiver_present) { roll_out = 0; pitch_out = 0; return; } // fetch roll and pitch inputs roll_out = channel_roll->get_control_in(); pitch_out = channel_pitch->get_control_in(); // limit max lean angle angle_limit = constrain_float(angle_limit, 1000.0f, angle_max); // scale roll and pitch inputs to ANGLE_MAX parameter range float scaler = angle_max/(float)ROLL_PITCH_YAW_INPUT_MAX; roll_out *= scaler; pitch_out *= scaler; // do circular limit float total_in = norm(pitch_out, roll_out); if (total_in > angle_limit) { float ratio = angle_limit / total_in; roll_out *= ratio; pitch_out *= ratio; } // do lateral tilt to euler roll conversion roll_out = (18000/M_PI) * atanf(cosf(pitch_out*(M_PI/18000))*tanf(roll_out*(M_PI/18000))); // roll_out and pitch_out are returned } bool Mode::_TakeOff::triggered(const float target_climb_rate) const { if (!copter.ap.land_complete) { // can't take off if we're already flying return false; } if (target_climb_rate <= 0.0f) { // can't takeoff unless we want to go up... return false; } if (copter.motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED) { // hold aircraft on the ground until rotor speed runup has finished return false; } return true; } bool Mode::is_disarmed_or_landed() const { if (!motors->armed() || !copter.ap.auto_armed || copter.ap.land_complete) { return true; } return false; } void Mode::zero_throttle_and_relax_ac(bool spool_up) { if (spool_up) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); } else { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); } attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f); attitude_control->set_throttle_out(0.0f, false, copter.g.throttle_filt); } void Mode::zero_throttle_and_hold_attitude() { // run attitude controller attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); attitude_control->set_throttle_out(0.0f, false, copter.g.throttle_filt); } void Mode::make_safe_spool_down() { // command aircraft to initiate the shutdown process motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); switch (motors->get_spool_state()) { case AP_Motors::SpoolState::SHUT_DOWN: case AP_Motors::SpoolState::GROUND_IDLE: // relax controllers during idle states attitude_control->reset_rate_controller_I_terms_smoothly(); attitude_control->set_yaw_target_to_current_heading(); break; case AP_Motors::SpoolState::SPOOLING_UP: case AP_Motors::SpoolState::THROTTLE_UNLIMITED: case AP_Motors::SpoolState::SPOOLING_DOWN: // while transitioning though active states continue to operate normally break; } pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero pos_control->update_z_controller(); // we may need to move this out attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f); } /* get a height above ground estimate for landing */ int32_t Mode::get_alt_above_ground_cm(void) { int32_t alt_above_ground_cm; if (copter.get_rangefinder_height_interpolated_cm(alt_above_ground_cm)) { return alt_above_ground_cm; } if (!pos_control->is_active_xy()) { return copter.current_loc.alt; } if (copter.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, alt_above_ground_cm)) { return alt_above_ground_cm; } // Assume the Earth is flat: return copter.current_loc.alt; } void Mode::land_run_vertical_control(bool pause_descent) { float cmb_rate = 0; if (!pause_descent) { float max_land_descent_velocity; if (g.land_speed_high > 0) { max_land_descent_velocity = -g.land_speed_high; } else { max_land_descent_velocity = pos_control->get_max_speed_down(); } // Don't speed up for landing. max_land_descent_velocity = MIN(max_land_descent_velocity, -abs(g.land_speed)); // Compute a vertical velocity demand such that the vehicle approaches g2.land_alt_low. Without the below constraint, this would cause the vehicle to hover at g2.land_alt_low. cmb_rate = sqrt_controller(MAX(g2.land_alt_low,100)-get_alt_above_ground_cm(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z(), G_Dt); // Constrain the demanded vertical velocity so that it is between the configured maximum descent speed and the configured minimum descent speed. cmb_rate = constrain_float(cmb_rate, max_land_descent_velocity, -abs(g.land_speed)); #if PRECISION_LANDING == ENABLED const bool navigating = pos_control->is_active_xy(); bool doing_precision_landing = !copter.ap.land_repo_active && copter.precland.target_acquired() && navigating; if (doing_precision_landing && copter.rangefinder_alt_ok() && copter.rangefinder_state.alt_cm > 35.0f && copter.rangefinder_state.alt_cm < 200.0f) { // compute desired velocity const float precland_acceptable_error = 15.0f; const float precland_min_descent_speed = 10.0f; float max_descent_speed = abs(g.land_speed)*0.5f; float land_slowdown = MAX(0.0f, pos_control->get_pos_error_xy()*(max_descent_speed/precland_acceptable_error)); cmb_rate = MIN(-precland_min_descent_speed, -max_descent_speed+land_slowdown); } #endif } // update altitude target and call position controller pos_control->set_alt_target_from_climb_rate_ff(cmb_rate, G_Dt, true); pos_control->update_z_controller(); } void Mode::land_run_horizontal_control() { float target_roll = 0.0f; float target_pitch = 0.0f; float target_yaw_rate = 0; // relax loiter target if we might be landed if (copter.ap.land_complete_maybe) { loiter_nav->soften_for_landing(); } // process pilot inputs if (!copter.failsafe.radio) { if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){ AP::logger().Write_Event(LogEvent::LAND_CANCELLED_BY_PILOT); // exit land if throttle is high if (!set_mode(Mode::Number::LOITER, ModeReason::THROTTLE_LAND_ESCAPE)) { set_mode(Mode::Number::ALT_HOLD, ModeReason::THROTTLE_LAND_ESCAPE); } } if (g.land_repositioning) { // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max()); // record if pilot has overridden roll or pitch if (!is_zero(target_roll) || !is_zero(target_pitch)) { if (!copter.ap.land_repo_active) { AP::logger().Write_Event(LogEvent::LAND_REPO_ACTIVE); } copter.ap.land_repo_active = true; } } // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } #if PRECISION_LANDING == ENABLED bool doing_precision_landing = !copter.ap.land_repo_active && copter.precland.target_acquired(); // run precision landing if (doing_precision_landing) { Vector2f target_pos, target_vel_rel; if (!copter.precland.get_target_position_cm(target_pos)) { target_pos.x = inertial_nav.get_position().x; target_pos.y = inertial_nav.get_position().y; } if (!copter.precland.get_target_velocity_relative_cms(target_vel_rel)) { target_vel_rel.x = -inertial_nav.get_velocity().x; target_vel_rel.y = -inertial_nav.get_velocity().y; } pos_control->set_xy_target(target_pos.x, target_pos.y); pos_control->override_vehicle_velocity_xy(-target_vel_rel); } #endif // process roll, pitch inputs loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt); // run loiter controller loiter_nav->update(); float nav_roll = loiter_nav->get_roll(); float nav_pitch = loiter_nav->get_pitch(); if (g2.wp_navalt_min > 0) { // user has requested an altitude below which navigation // attitude is limited. This is used to prevent commanded roll // over on landing, which particularly affects helicopters if // there is any position estimate drift after touchdown. We // limit attitude to 7 degrees below this limit and linearly // interpolate for 1m above that float attitude_limit_cd = linear_interpolate(700, copter.aparm.angle_max, get_alt_above_ground_cm(), g2.wp_navalt_min*100U, (g2.wp_navalt_min+1)*100U); float total_angle_cd = norm(nav_roll, nav_pitch); if (total_angle_cd > attitude_limit_cd) { float ratio = attitude_limit_cd / total_angle_cd; nav_roll *= ratio; nav_pitch *= ratio; // tell position controller we are applying an external limit pos_control->set_limit_accel_xy(); } } // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(nav_roll, nav_pitch, target_yaw_rate); } else { // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(nav_roll, nav_pitch, auto_yaw.yaw(), true); } } float Mode::throttle_hover() const { return motors->get_throttle_hover(); } // transform pilot's manual throttle input to make hover throttle mid stick // used only for manual throttle modes // thr_mid should be in the range 0 to 1 // returns throttle output 0 to 1 float Mode::get_pilot_desired_throttle() const { const float thr_mid = throttle_hover(); int16_t throttle_control = channel_throttle->get_control_in(); int16_t mid_stick = copter.get_throttle_mid(); // protect against unlikely divide by zero if (mid_stick <= 0) { mid_stick = 500; } // ensure reasonable throttle values throttle_control = constrain_int16(throttle_control,0,1000); // calculate normalised throttle input float throttle_in; if (throttle_control < mid_stick) { throttle_in = ((float)throttle_control)*0.5f/(float)mid_stick; } else { throttle_in = 0.5f + ((float)(throttle_control-mid_stick)) * 0.5f / (float)(1000-mid_stick); } const float expo = constrain_float(-(thr_mid-0.5f)/0.375f, -0.5f, 1.0f); // calculate the output throttle using the given expo function float throttle_out = throttle_in*(1.0f-expo) + expo*throttle_in*throttle_in*throttle_in; return throttle_out; } float Mode::get_avoidance_adjusted_climbrate(float target_rate) { #if AC_AVOID_ENABLED == ENABLED AP::ac_avoid()->adjust_velocity_z(pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z(), target_rate, G_Dt); return target_rate; #else return target_rate; #endif } Mode::AltHoldModeState Mode::get_alt_hold_state(float target_climb_rate_cms) { // Alt Hold State Machine Determination if (!motors->armed()) { // the aircraft should moved to a shut down state motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); // transition through states as aircraft spools down switch (motors->get_spool_state()) { case AP_Motors::SpoolState::SHUT_DOWN: return AltHold_MotorStopped; case AP_Motors::SpoolState::GROUND_IDLE: return AltHold_Landed_Ground_Idle; default: return AltHold_Landed_Pre_Takeoff; } } else if (takeoff.running() || takeoff.triggered(target_climb_rate_cms)) { // the aircraft is currently landed or taking off, asking for a positive climb rate and in THROTTLE_UNLIMITED // the aircraft should progress through the take off procedure return AltHold_Takeoff; } else if (!copter.ap.auto_armed || copter.ap.land_complete) { // the aircraft is armed and landed if (target_climb_rate_cms < 0.0f && !copter.ap.using_interlock) { // the aircraft should move to a ground idle state motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); } else { // the aircraft should prepare for imminent take off motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); } if (motors->get_spool_state() == AP_Motors::SpoolState::GROUND_IDLE) { // the aircraft is waiting in ground idle return AltHold_Landed_Ground_Idle; } else { // the aircraft can leave the ground at any time return AltHold_Landed_Pre_Takeoff; } } else { // the aircraft is in a flying state motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); return AltHold_Flying; } } // transform pilot's yaw input into a desired yaw rate // returns desired yaw rate in centi-degrees per second float Mode::get_pilot_desired_yaw_rate(int16_t stick_angle) { // throttle failsafe check if (copter.failsafe.radio || !copter.ap.rc_receiver_present) { return 0.0f; } // range check expo g2.acro_y_expo = constrain_float(g2.acro_y_expo, 0.0f, 1.0f); // calculate yaw rate request float yaw_request; if (is_zero(g2.acro_y_expo)) { yaw_request = stick_angle * g.acro_yaw_p; } else { // expo variables float y_in, y_in3, y_out; // yaw expo y_in = float(stick_angle)/ROLL_PITCH_YAW_INPUT_MAX; y_in3 = y_in*y_in*y_in; y_out = (g2.acro_y_expo * y_in3) + ((1.0f - g2.acro_y_expo) * y_in); yaw_request = ROLL_PITCH_YAW_INPUT_MAX * y_out * g.acro_yaw_p; } // convert pilot input to the desired yaw rate return yaw_request; } // pass-through functions to reduce code churn on conversion; // these are candidates for moving into the Mode base // class. float Mode::get_pilot_desired_climb_rate(float throttle_control) { return copter.get_pilot_desired_climb_rate(throttle_control); } float Mode::get_non_takeoff_throttle() { return copter.get_non_takeoff_throttle(); } void Mode::update_simple_mode(void) { copter.update_simple_mode(); } bool Mode::set_mode(Mode::Number mode, ModeReason reason) { return copter.set_mode(mode, reason); } void Mode::set_land_complete(bool b) { return copter.set_land_complete(b); } GCS_Copter &Mode::gcs() { return copter.gcs(); } // set_throttle_takeoff - allows modes to tell throttle controller we // are taking off so I terms can be cleared void Mode::set_throttle_takeoff() { // tell position controller to reset alt target and reset I terms pos_control->init_takeoff(); } uint16_t Mode::get_pilot_speed_dn() { return copter.get_pilot_speed_dn(); }