// -*- tab-width: 4; Mode: C++; c-basic-offset: 3; indent-tabs-mode: t -*- /* AP_RangeFinder.cpp - Arduino Library for Sharpe GP2Y0A02YK0F infrared proximity sensor Code by Jose Julio and Randy Mackay. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This has the basic functions that all RangeFinders need implemented */ // AVR LibC Includes #include "WConstants.h" #include "RangeFinder.h" // Constructor ///////////////////////////////////////////////////////////////// RangeFinder::RangeFinder() : _ap_adc(NULL), _num_averages(AP_RANGEFINDER_NUM_AVERAGES), _history_ptr(0) { } // Public Methods ////////////////////////////////////////////////////////////// void RangeFinder::init(int analogPort, AP_ADC *ap_adc) { // local variables int i; // store the analog port to be used _analogPort = analogPort; // set the given analog port to an input if( analogPort != AP_RANGEFINDER_PITOT_TUBE ){ pinMode(analogPort, INPUT); }else{ _num_averages = 0; // turn off averaging for pitot tube because AP_ADC does this for us } // capture the AP_ADC object if passed in if( ap_adc != NULL ) _ap_adc = ap_adc; // make first call to read to get initial distance read(); // initialise history for(i = 0; i < AP_RANGEFINDER_NUM_AVERAGES; i++) _history[i] = distance; } void RangeFinder::set_orientation(int x, int y, int z) { orientation_x = x; orientation_y = y; orientation_z = z; } // Read Sensor data - only the raw_value is filled in by this parent class int RangeFinder::read() { // local variables int temp_dist; int total = 0; int i; // read from the analog port or pitot tube if(_analogPort == AP_RANGEFINDER_PITOT_TUBE){ if(_ap_adc != NULL){ raw_value = _ap_adc->Ch(AP_RANGEFINDER_PITOT_TUBE_ADC_CHANNEL) >> 2; // values from ADC are twice as big as you'd expect }else{ raw_value = 0; } // convert analog value to distance in cm (using child implementation most likely) temp_dist = convert_raw_to_distance(raw_value); // ensure distance is within min and max distance = constrain(temp_dist, min_distance, max_distance); // return distance return distance; }else{ // read raw sensor value and convert to distance raw_value = analogRead(_analogPort); // convert analog value to distance in cm (using child implementation most likely) temp_dist = convert_raw_to_distance(raw_value); // ensure distance is within min and max distance = constrain(temp_dist, min_distance, max_distance); // filter the results if( _num_averages > 1 ){ _history_ptr = (_history_ptr + 1) % _num_averages; _history[_history_ptr] = distance; for(i = 0; i < _num_averages; i++ ) total += _history[i]; distance = total / _num_averages; } // return distance return distance; } }