/* * The MIT License (MIT) * * Copyright (c) 2014 Pavel Kirienko * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Siddharth Bharat Purohit */ #include "AP_HAL_ChibiOS.h" #if HAL_NUM_CAN_IFACES #include #include #include # include #include #include # if defined(STM32H7XX) || defined(STM32G4) #include "CANFDIface.h" #define FDCAN1_IT0_IRQHandler STM32_FDCAN1_IT0_HANDLER #define FDCAN1_IT1_IRQHandler STM32_FDCAN1_IT1_HANDLER #define FDCAN2_IT0_IRQHandler STM32_FDCAN2_IT0_HANDLER #define FDCAN2_IT1_IRQHandler STM32_FDCAN2_IT1_HANDLER #if defined(STM32G4) // on G4 FIFO elements are spaced at 18 words #define FDCAN_FRAME_BUFFER_SIZE 18 #else // on H7 they are spaced at 4 words #define FDCAN_FRAME_BUFFER_SIZE 4 #endif //Message RAM Allocations in Word lengths #if defined(STM32H7) #define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List #define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames #define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames #define MESSAGE_RAM_END_ADDR 0x4000B5FC #elif defined(STM32G4) #define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List #define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames #define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames #define FDCAN_MESSAGERAM_STRIDE 0x350 // separation of messageram areas #define FDCAN_EXFILTER_OFFSET 0x70 #define FDCAN_RXFIFO0_OFFSET 0xB0 #define FDCAN_RXFIFO1_OFFSET 0x188 #define FDCAN_TXFIFO_OFFSET 0x278 #define MESSAGE_RAM_END_ADDR 0x4000B5FC #else #error "Unsupported MCU for FDCAN" #endif extern AP_HAL::HAL& hal; static_assert(STM32_FDCANCLK <= 80U*1000U*1000U, "FDCAN clock must be max 80MHz"); using namespace ChibiOS; #if HAL_CANMANAGER_ENABLED #define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANFDIface", fmt, ##args); } while (0) #else #define Debug(fmt, args...) #endif constexpr CANIface::CanType* const CANIface::Can[]; static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES]; uint8_t CANIface::next_interface; // mapping from logical interface to physical. First physical is 0, first logical is 0 static constexpr uint8_t can_interfaces[HAL_NUM_CAN_IFACES] = { HAL_CAN_INTERFACE_LIST }; // mapping from physical interface back to logical. First physical is 0, first logical is 0 static constexpr int8_t can_iface_to_idx[3] = { HAL_CAN_INTERFACE_REV_LIST }; #define REG_SET_TIMEOUT 250 // if it takes longer than 250ms for setting a register we have failed static inline bool driver_initialised(uint8_t iface_index) { if (can_ifaces[iface_index] == nullptr) { return false; } return true; } static inline void handleCANInterrupt(uint8_t phys_index, uint8_t line_index) { const int8_t iface_index = can_iface_to_idx[phys_index]; if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) { return; } if (!driver_initialised(iface_index)) { //Just reset all the interrupts and return CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N; CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N; CANIface::Can[iface_index]->IR = FDCAN_IR_TEFN; return; } if (line_index == 0) { if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF0N) || (CANIface::Can[iface_index]->IR & FDCAN_IR_RF0F)) { CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N | FDCAN_IR_RF0F; can_ifaces[iface_index]->handleRxInterrupt(0); } if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF1N) || (CANIface::Can[iface_index]->IR & FDCAN_IR_RF1F)) { CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N | FDCAN_IR_RF1F; can_ifaces[iface_index]->handleRxInterrupt(1); } } else { if (CANIface::Can[iface_index]->IR & FDCAN_IR_TC) { CANIface::Can[iface_index]->IR = FDCAN_IR_TC; uint64_t timestamp_us = AP_HAL::micros64(); if (timestamp_us > 0) { timestamp_us--; } can_ifaces[iface_index]->handleTxCompleteInterrupt(timestamp_us); } if ((CANIface::Can[iface_index]->IR & FDCAN_IR_BO)) { CANIface::Can[iface_index]->IR = FDCAN_IR_BO; can_ifaces[iface_index]->handleBusOffInterrupt(); } } can_ifaces[iface_index]->pollErrorFlagsFromISR(); } uint32_t CANIface::FDCANMessageRAMOffset_ = 0; CANIface::CANIface(uint8_t index) : self_index_(index), rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)), rx_queue_(&rx_bytebuffer_) { if (index >= HAL_NUM_CAN_IFACES) { AP_HAL::panic("Bad CANIface index."); } else { can_ = Can[index]; } } // constructor suitable for array CANIface::CANIface() : CANIface(next_interface++) {} void CANIface::handleBusOffInterrupt() { _detected_bus_off = true; } bool CANIface::computeTimings(const uint32_t target_bitrate, Timings& out_timings) { if (target_bitrate < 1) { return false; } /* * Hardware configuration */ const uint32_t pclk = STM32_FDCANCLK; static const int MaxBS1 = 16; static const int MaxBS2 = 8; /* * Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG * CAN in Automation, 2003 * * According to the source, optimal quanta per bit are: * Bitrate Optimal Maximum * 1000 kbps 8 10 * 500 kbps 16 17 * 250 kbps 16 17 * 125 kbps 16 17 */ const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; static const int MaxSamplePointLocation = 900; /* * Computing (prescaler * BS): * BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual * BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified * let: * BS = 1 + BS1 + BS2 -- Number of time quanta per bit * PRESCALER_BS = PRESCALER * BS * ==> * PRESCALER_BS = PCLK / BITRATE */ const uint32_t prescaler_bs = pclk / target_bitrate; /* * Searching for such prescaler value so that the number of quanta per bit is highest. */ uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1); while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { if (bs1_bs2_sum <= 2) { return false; // No solution } bs1_bs2_sum--; } const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); if ((prescaler < 1U) || (prescaler > 1024U)) { return false; // No solution } /* * Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. * We need to find the values so that the sample point is as close as possible to the optimal value. * * Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) * {{bs2 -> (1 + bs1)/7}} * * Hence: * bs2 = (1 + bs1) / 7 * bs1 = (7 * bs1_bs2_sum - 1) / 8 * * Sample point location can be computed as follows: * Sample point location = (1 + bs1) / (1 + bs1 + bs2) * * Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: * - With rounding to nearest * - With rounding to zero */ struct BsPair { uint8_t bs1; uint8_t bs2; uint16_t sample_point_permill; BsPair() : bs1(0), bs2(0), sample_point_permill(0) { } BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) : bs1(arg_bs1), bs2(uint8_t(bs1_bs2_sum - bs1)), sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) {} bool isValid() const { return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); } }; // First attempt with rounding to nearest BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); if (solution.sample_point_permill > MaxSamplePointLocation) { // Second attempt with rounding to zero solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8)); } /* * Final validation * Helpful Python: * def sample_point_from_btr(x): * assert 0b0011110010000000111111000000000 & x == 0 * ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 * return (1+ts1+1)/(1+ts1+1+ts2+1) * */ if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { return false; } Debug("Timings: quanta/bit: %d, sample point location: %.1f%%\n", int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); out_timings.prescaler = uint16_t(prescaler - 1U); out_timings.sjw = 0; // Which means one out_timings.bs1 = uint8_t(solution.bs1 - 1); out_timings.bs2 = uint8_t(solution.bs2 - 1); return true; } int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline, CanIOFlags flags) { stats.tx_requests++; if (frame.isErrorFrame() || frame.dlc > 8 || !initialised_) { stats.tx_rejected++; return -1; } CriticalSectionLocker lock; /* * Seeking for an empty slot */ uint8_t index; if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { stats.tx_rejected++; return 0; //we don't have free space } index = ((can_->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos); // Copy Frame to RAM // Calculate Tx element address uint32_t* buffer = (uint32_t *)(MessageRam_.TxFIFOQSA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); //Setup Frame ID if (frame.isExtended()) { buffer[0] = (IDE | frame.id); } else { buffer[0] = (frame.id << 18); } if (frame.isRemoteTransmissionRequest()) { buffer[0] |= RTR; } //Write Data Length Code, and Message Marker buffer[1] = frame.dlc << 16 | index << 24; // Write Frame to the message RAM buffer[2] = (uint32_t(frame.data[3]) << 24) | (uint32_t(frame.data[2]) << 16) | (uint32_t(frame.data[1]) << 8) | (uint32_t(frame.data[0]) << 0); buffer[3] = (uint32_t(frame.data[7]) << 24) | (uint32_t(frame.data[6]) << 16) | (uint32_t(frame.data[5]) << 8) | (uint32_t(frame.data[4]) << 0); //Set Add Request can_->TXBAR = (1 << index); //Registering the pending transmission so we can track its deadline and loopback it as needed pending_tx_[index].deadline = tx_deadline; pending_tx_[index].frame = frame; pending_tx_[index].loopback = (flags & AP_HAL::CANIface::Loopback) != 0; pending_tx_[index].abort_on_error = (flags & AP_HAL::CANIface::AbortOnError) != 0; pending_tx_[index].index = index; // setup frame initial state pending_tx_[index].aborted = false; pending_tx_[index].setup = true; pending_tx_[index].pushed = false; return 1; } int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags) { CriticalSectionLocker lock; CanRxItem rx_item; if (!rx_queue_.pop(rx_item) || !initialised_) { return 0; } out_frame = rx_item.frame; out_timestamp_us = rx_item.timestamp_us; out_flags = rx_item.flags; return 1; } bool CANIface::configureFilters(const CanFilterConfig* filter_configs, uint16_t num_configs) { #if defined(STM32G4) // not supported yet can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode uint32_t while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } initialised_ = true; return true; #else uint32_t num_extid = 0, num_stdid = 0; uint32_t total_available_list_size = MAX_FILTER_LIST_SIZE; uint32_t* filter_ptr; if (initialised_ || mode_ != FilteredMode) { // we are already initialised can't do anything here return false; } //count number of frames of each type for (uint8_t i = 0; i < num_configs; i++) { const CanFilterConfig* const cfg = filter_configs + i; if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) { num_extid++; } else { num_stdid++; } } CriticalSectionLocker lock; //Allocate Message RAM for Standard ID Filter List if (num_stdid == 0) { //No Frame with Standard ID is to be accepted #if defined(STM32G4) can_->RXGFC |= 0x2; //Reject All Standard ID Frames #else can_->GFC |= 0x2; //Reject All Standard ID Frames #endif } else if ((num_stdid < total_available_list_size) && (num_stdid <= 128)) { can_->SIDFC = (FDCANMessageRAMOffset_ << 2) | (num_stdid << 16); MessageRam_.StandardFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_stdid; total_available_list_size -= num_stdid; can_->GFC |= (0x3U << 4); //Reject non matching Standard frames } else { //The List is too big, return fail can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode uint32_t while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } return false; } if (num_stdid) { num_stdid = 0; //reset list count filter_ptr = (uint32_t*)MessageRam_.StandardFilterSA; //Run through the filter list and setup standard id filter list for (uint8_t i = 0; i < num_configs; i++) { uint32_t id = 0; uint32_t mask = 0; const CanFilterConfig* const cfg = filter_configs + i; if (!((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF))) { id = (cfg->id & AP_HAL::CANFrame::MaskStdID); // Regular std frames, nothing fancy. mask = (cfg->mask & 0x7F); filter_ptr[num_stdid] = 0x2U << 30 | //Classic CAN Filter 0x1U << 27 | //Store in Rx FIFO0 if filter matches id << 16 | mask; num_stdid++; } } } //Allocate Message RAM for Extended ID Filter List if (num_extid == 0) { //No Frame with Extended ID is to be accepted can_->GFC |= 0x1; //Reject All Extended ID Frames } else if ((num_extid < (total_available_list_size/2)) && (num_extid <= 64)) { can_->XIDFC = (FDCANMessageRAMOffset_ << 2) | (num_extid << 16); MessageRam_.ExtendedFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_extid*2; can_->GFC |= (0x3U << 2); // Reject non matching Extended frames } else { //The List is too big, return fail can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode uint32_t while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } return false; } if (num_extid) { num_extid = 0; filter_ptr = (uint32_t*)MessageRam_.ExtendedFilterSA; //Run through the filter list and setup extended id filter list for (uint8_t i = 0; i < num_configs; i++) { uint32_t id = 0; uint32_t mask = 0; const CanFilterConfig* const cfg = filter_configs + i; if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) { id = (cfg->id & AP_HAL::CANFrame::MaskExtID); mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID); filter_ptr[num_extid*2] = 0x1U << 29 | id; //Store in Rx FIFO0 if filter matches filter_ptr[num_extid*2 + 1] = 0x2U << 30 | mask; // Classic CAN Filter num_extid++; } } } MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { //We are overflowing the limit of Allocated Message RAM AP_HAL::panic("CANFDIface: Message RAM Overflow!"); } // Finally get out of Config Mode can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode uint32_t while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } initialised_ = true; return true; #endif // defined(STM32G4) } uint16_t CANIface::getNumFilters() const { return MAX_FILTER_LIST_SIZE; } bool CANIface::clock_init_ = false; bool CANIface::init(const uint32_t bitrate, const OperatingMode mode) { Debug("Bitrate %lu mode %d", static_cast(bitrate), static_cast(mode)); if (self_index_ > HAL_NUM_CAN_IFACES) { Debug("CAN drv init failed"); return false; } if (can_ifaces[self_index_] == nullptr) { can_ifaces[self_index_] = this; #if !defined(HAL_BOOTLOADER_BUILD) hal.can[self_index_] = this; #endif } bitrate_ = bitrate; mode_ = mode; //Only do it once //Doing it second time will reset the previously initialised bus if (!clock_init_) { CriticalSectionLocker lock; #if defined(STM32G4) RCC->APB1ENR1 |= RCC_APB1ENR1_FDCANEN; RCC->APB1RSTR1 |= RCC_APB1RSTR1_FDCANRST; RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_FDCANRST; #else RCC->APB1HENR |= RCC_APB1HENR_FDCANEN; RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST; RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST; #endif clock_init_ = true; } /* * IRQ */ if (!irq_init_) { CriticalSectionLocker lock; switch (can_interfaces[self_index_]) { case 0: nvicEnableVector(FDCAN1_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(FDCAN1_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); break; case 1: nvicEnableVector(FDCAN2_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(FDCAN2_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); break; #ifdef FDCAN3_IT0_IRQn case 2: nvicEnableVector(FDCAN3_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(FDCAN3_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); break; #endif } irq_init_ = true; } // Setup FDCAN for configuration mode and disable all interrupts { CriticalSectionLocker lock; can_->CCCR &= ~FDCAN_CCCR_CSR; // Exit sleep mode uint32_t while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } //Wait for wake up ack can_->CCCR |= FDCAN_CCCR_INIT; // Request init while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change can_->IE = 0; // Disable interrupts while initialization is in progress } /* * Object state - interrupts are disabled, so it's safe to modify it now */ rx_queue_.clear(); for (uint32_t i=0; i < NumTxMailboxes; i++) { pending_tx_[i] = CanTxItem(); } peak_tx_mailbox_index_ = 0; had_activity_ = false; /* * CAN timings for this bitrate */ Timings timings; if (!computeTimings(bitrate, timings)) { can_->CCCR &= ~FDCAN_CCCR_INIT; uint32_t while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } return false; } Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u\n", unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); //setup timing register //TODO: Do timing calculations for FDCAN can_->NBTP = ((timings.sjw << FDCAN_NBTP_NSJW_Pos) | (timings.bs1 << FDCAN_NBTP_NTSEG1_Pos) | (timings.bs2 << FDCAN_NBTP_NTSEG2_Pos) | (timings.prescaler << FDCAN_NBTP_NBRP_Pos)); can_->DBTP = ((timings.bs1 << FDCAN_DBTP_DTSEG1_Pos) | (timings.bs2 << FDCAN_DBTP_DTSEG2_Pos) | (timings.prescaler << FDCAN_DBTP_DBRP_Pos)); //RX Config #if defined(STM32H7) can_->RXESC = 0; //Set for 8Byte Frames #endif //Setup Message RAM setupMessageRam(); // Reset Bus Off _detected_bus_off = false; //Clear all Interrupts can_->IR = 0x3FFFFFFF; //Enable Interrupts can_->IE = FDCAN_IE_TCE | // Transmit Complete interrupt enable FDCAN_IE_BOE | // Bus off Error Interrupt enable FDCAN_IE_RF0NE | // RX FIFO 0 new message FDCAN_IE_RF0FE | // Rx FIFO 0 FIFO Full FDCAN_IE_RF1NE | // RX FIFO 1 new message FDCAN_IE_RF1FE; // Rx FIFO 1 FIFO Full #if defined(STM32G4) can_->ILS = FDCAN_ILS_PERR | FDCAN_ILS_SMSG; #else can_->ILS = FDCAN_ILS_TCL | FDCAN_ILS_BOE; //Set Line 1 for Transmit Complete Event Interrupt and Bus Off Interrupt #endif // And Busoff error #if defined(STM32G4) can_->TXBTIE = 0x7; #else can_->TXBTIE = 0xFFFFFFFF; #endif can_->ILE = 0x3; // If mode is Filtered then we finish the initialisation in configureFilter method // otherwise we finish here if (mode != FilteredMode) { can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode uint32_t while_start_ms = AP_HAL::millis(); while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { return false; } } //initialised initialised_ = true; } return true; } void CANIface::clear_rx() { CriticalSectionLocker lock; rx_queue_.clear(); } void CANIface::setupMessageRam() { #if defined(STM32G4) const uint32_t base = SRAMCAN_BASE + FDCAN_MESSAGERAM_STRIDE * can_interfaces[self_index_]; memset((void*)base, 0, FDCAN_MESSAGERAM_STRIDE); MessageRam_.StandardFilterSA = base; MessageRam_.ExtendedFilterSA = base + FDCAN_EXFILTER_OFFSET; MessageRam_.RxFIFO0SA = base + FDCAN_RXFIFO0_OFFSET; MessageRam_.RxFIFO1SA = base + FDCAN_RXFIFO1_OFFSET; MessageRam_.TxFIFOQSA = base + FDCAN_TXFIFO_OFFSET; can_->TXBC = 0; // fifo mode #else uint32_t num_elements = 0; // Rx FIFO 0 start address and element count num_elements = MIN((FDCAN_NUM_RXFIFO0_SIZE/FDCAN_FRAME_BUFFER_SIZE), 64U); if (num_elements) { can_->RXF0C = (FDCANMessageRAMOffset_ << 2) | (num_elements << 16); MessageRam_.RxFIFO0SA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; } // Tx FIFO/queue start address and element count num_elements = MIN((FDCAN_TX_FIFO_BUFFER_SIZE/FDCAN_FRAME_BUFFER_SIZE), 32U); if (num_elements) { can_->TXBC = (FDCANMessageRAMOffset_ << 2) | (num_elements << 24); MessageRam_.TxFIFOQSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; } MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { //We are overflowing the limit of Allocated Message RAM AP_HAL::panic("CANFDIface: Message RAM Overflow!"); return; } #endif } void CANIface::handleTxCompleteInterrupt(const uint64_t timestamp_us) { for (uint8_t i = 0; i < NumTxMailboxes; i++) { if ((can_->TXBTO & (1UL << i))) { if (!pending_tx_[i].pushed) { stats.tx_success++; pending_tx_[i].pushed = true; } else { continue; } if (pending_tx_[i].loopback && had_activity_) { CanRxItem rx_item; rx_item.frame = pending_tx_[i].frame; rx_item.timestamp_us = timestamp_us; rx_item.flags = AP_HAL::CANIface::Loopback; rx_queue_.push(rx_item); } if (event_handle_ != nullptr) { stats.num_events++; #if CH_CFG_USE_EVENTS == TRUE evt_src_.signalI(1 << self_index_); #endif } } } } bool CANIface::readRxFIFO(uint8_t fifo_index) { uint32_t *frame_ptr; uint32_t index; uint64_t timestamp_us = AP_HAL::micros64(); if (fifo_index == 0) { #if !defined(STM32G4) //Check if RAM allocated to RX FIFO if ((can_->RXF0C & FDCAN_RXF0C_F0S) == 0) { return false; } #endif //Register Message Lost as a hardware error if ((can_->RXF0S & FDCAN_RXF0S_RF0L) != 0) { stats.rx_errors++; } if ((can_->RXF0S & FDCAN_RXF0S_F0FL) == 0) { return false; //No More messages in FIFO } else { index = ((can_->RXF0S & FDCAN_RXF0S_F0GI) >> 8); frame_ptr = (uint32_t *)(MessageRam_.RxFIFO0SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); } } else if (fifo_index == 1) { #if !defined(STM32G4) //Check if RAM allocated to RX FIFO if ((can_->RXF1C & FDCAN_RXF1C_F1S) == 0) { return false; } #endif //Register Message Lost as a hardware error if ((can_->RXF1S & FDCAN_RXF1S_RF1L) != 0) { stats.rx_errors++; } if ((can_->RXF1S & FDCAN_RXF1S_F1FL) == 0) { return false; } else { index = ((can_->RXF1S & FDCAN_RXF1S_F1GI) >> 8); frame_ptr = (uint32_t *)(MessageRam_.RxFIFO1SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); } } else { return false; } // Read the frame contents AP_HAL::CANFrame frame; uint32_t id = frame_ptr[0]; if ((id & IDE) == 0) { //Standard ID frame.id = ((id & STID_MASK) >> 18) & AP_HAL::CANFrame::MaskStdID; } else { //Extended ID frame.id = (id & EXID_MASK) & AP_HAL::CANFrame::MaskExtID; frame.id |= AP_HAL::CANFrame::FlagEFF; } if ((id & RTR) != 0) { frame.id |= AP_HAL::CANFrame::FlagRTR; } frame.dlc = (frame_ptr[1] & DLC_MASK) >> 16; uint8_t *data = (uint8_t*)&frame_ptr[2]; //We only handle Data Length of 8 Bytes for now for (uint8_t i = 0; i < 8; i++) { frame.data[i] = data[i]; } //Acknowledge the FIFO entry we just read if (fifo_index == 0) { can_->RXF0A = index; } else if (fifo_index == 1) { can_->RXF1A = index; } /* * Store with timeout into the FIFO buffer */ CanRxItem rx_item; rx_item.frame = frame; rx_item.timestamp_us = timestamp_us; rx_item.flags = 0; if (rx_queue_.push(rx_item)) { stats.rx_received++; } else { stats.rx_overflow++; } return true; } void CANIface::handleRxInterrupt(uint8_t fifo_index) { while (readRxFIFO(fifo_index)) { had_activity_ = true; } if (event_handle_ != nullptr) { stats.num_events++; #if CH_CFG_USE_EVENTS == TRUE evt_src_.signalI(1 << self_index_); #endif } } /** * This method is used to count errors and abort transmission on error if necessary. * This functionality used to be implemented in the SCE interrupt handler, but that approach was * generating too much processing overhead, especially on disconnected interfaces. * * Should be called from RX ISR, TX ISR, and select(); interrupts must be enabled. */ void CANIface::pollErrorFlagsFromISR() { const uint8_t cel = can_->ECR >> 16; if (cel != 0) { stats.ecr = can_->ECR; for (int i = 0; i < NumTxMailboxes; i++) { if (!pending_tx_[i].abort_on_error || pending_tx_[i].aborted) { continue; } if (((1 << pending_tx_[i].index) & can_->TXBRP)) { can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission pending_tx_[i].aborted = true; stats.tx_abort++; } } } } void CANIface::pollErrorFlags() { CriticalSectionLocker cs_locker; pollErrorFlagsFromISR(); } bool CANIface::canAcceptNewTxFrame() const { #if !defined(STM32G4) //Check if Tx FIFO is allocated if ((can_->TXBC & FDCAN_TXBC_TFQS) == 0) { return false; } #endif if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { return false; //we don't have free space } return true; } /** * Total number of hardware failures and other kinds of errors (e.g. queue overruns). * May increase continuously if the interface is not connected to the bus. */ uint32_t CANIface::getErrorCount() const { CriticalSectionLocker lock; return stats.num_busoff_err + stats.rx_errors + stats.rx_overflow + stats.tx_rejected + stats.tx_abort + stats.tx_timedout; } #if CH_CFG_USE_EVENTS == TRUE ChibiOS::EventSource CANIface::evt_src_; bool CANIface::set_event_handle(AP_HAL::EventHandle* handle) { CriticalSectionLocker lock; event_handle_ = handle; event_handle_->set_source(&evt_src_); return event_handle_->register_event(1 << self_index_); } #endif bool CANIface::isRxBufferEmpty() const { CriticalSectionLocker lock; return rx_queue_.available() == 0; } void CANIface::clearErrors() { if (_detected_bus_off) { //Try Recovering from BusOff //While in Bus off mode the CAN Peripheral is put //into INIT mode, when we ask Peripheral to get out //of INIT mode, the bit stream processor (BSP) synchronizes //itself to the data transfer on the CAN bus by //waiting for the occurrence of a sequence of 11 consecutive //recessive bits (Bus_Idle) before it can take part in bus //activities and start the message transfer can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode stats.num_busoff_err++; _detected_bus_off = false; } } void CANIface::discardTimedOutTxMailboxes(uint64_t current_time) { CriticalSectionLocker lock; for (int i = 0; i < NumTxMailboxes; i++) { if (pending_tx_[i].aborted || !pending_tx_[i].setup) { continue; } if (((1 << pending_tx_[i].index) & can_->TXBRP) && pending_tx_[i].deadline < current_time) { can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission pending_tx_[i].aborted = true; stats.tx_timedout++; } } } void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const { write = false; read = !isRxBufferEmpty(); if (pending_tx != nullptr) { write = canAcceptNewTxFrame(); } } bool CANIface::select(bool &read, bool &write, const AP_HAL::CANFrame* pending_tx, uint64_t blocking_deadline) { const bool in_read = read; const bool in_write= write; uint64_t time = AP_HAL::micros64(); if (!read && !write) { //invalid request return false; } discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots pollErrorFlags(); clearErrors(); checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events if ((read && in_read) || (write && in_write)) { return true; } while (time < blocking_deadline) { if (event_handle_ == nullptr) { break; } event_handle_->wait(blocking_deadline - time); // Block until timeout expires or any iface updates checkAvailable(read, write, pending_tx); // Check what we got if ((read && in_read) || (write && in_write)) { return true; } time = AP_HAL::micros64(); } return false; } #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) void CANIface::get_stats(ExpandingString &str) { CriticalSectionLocker lock; str.printf("tx_requests: %lu\n" "tx_rejected: %lu\n" "tx_success: %lu\n" "tx_timedout: %lu\n" "tx_abort: %lu\n" "rx_received: %lu\n" "rx_overflow: %lu\n" "rx_errors: %lu\n" "num_busoff_err: %lu\n" "num_events: %lu\n" "ECR: %lx\n", stats.tx_requests, stats.tx_rejected, stats.tx_success, stats.tx_timedout, stats.tx_abort, stats.rx_received, stats.rx_overflow, stats.rx_errors, stats.num_busoff_err, stats.num_events, stats.ecr); } #endif /* * Interrupt handlers */ extern "C" { #ifdef HAL_CAN_IFACE1_ENABLE // FDCAN1 CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler); CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler) { CH_IRQ_PROLOGUE(); handleCANInterrupt(0, 0); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler); CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler) { CH_IRQ_PROLOGUE(); handleCANInterrupt(0, 1); CH_IRQ_EPILOGUE(); } #endif #ifdef HAL_CAN_IFACE2_ENABLE // FDCAN2 CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler); CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler) { CH_IRQ_PROLOGUE(); handleCANInterrupt(1, 0); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler); CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler) { CH_IRQ_PROLOGUE(); handleCANInterrupt(1, 1); CH_IRQ_EPILOGUE(); } #endif #ifdef HAL_CAN_IFACE3_ENABLE // FDCAN3 CH_IRQ_HANDLER(FDCAN3_IT0_IRQHandler); CH_IRQ_HANDLER(FDCAN3_IT0_IRQHandler) { CH_IRQ_PROLOGUE(); handleCANInterrupt(2, 0); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(FDCAN3_IT1_IRQHandler); CH_IRQ_HANDLER(FDCAN3_IT1_IRQHandler) { CH_IRQ_PROLOGUE(); handleCANInterrupt(2, 1); CH_IRQ_EPILOGUE(); } #endif } // extern "C" #endif //defined(STM32H7XX) || defined(STM32G4) #endif //HAL_NUM_CAN_IFACES