/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
Support for MicroStrain GQ7 serially connected AHRS Systems
Usage in SITL with hardware for debugging:
$ sim_vehicle.py -v Plane -A "--serial3=uart:/dev/3dm-gq7" --console --map -DG
$ ./Tools/autotest/sim_vehicle.py -v Plane -A "--serial3=uart:/dev/3dm-gq7" -DG
param set AHRS_EKF_TYPE 11
param set EAHRS_TYPE 7
param set GPS1_TYPE 21
param set GPS2_TYPE 21
param set SERIAL3_BAUD 115
param set SERIAL3_PROTOCOL 36
UDEV rules for repeatable USB connection:
$ cat /etc/udev/rules.d/99-usb-serial.rules
SUBSYSTEM=="tty", ATTRS{manufacturer}=="Lord Microstrain", SYMLINK+="3dm-gq7"
Usage with simulated MicroStrain7:
./Tools/autotest/sim_vehicle.py -v Plane -A "--serial3=sim:MicroStrain7" --console --map -DG
*/
#define ALLOW_DOUBLE_MATH_FUNCTIONS
#include "AP_ExternalAHRS_config.h"
#if AP_EXTERNAL_AHRS_MICROSTRAIN7_ENABLED
#include "AP_ExternalAHRS_MicroStrain7.h"
#include "AP_Compass/AP_Compass_config.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
static const char* LOG_FMT = "%s ExternalAHRS: %s";
extern const AP_HAL::HAL &hal;
AP_ExternalAHRS_MicroStrain7::AP_ExternalAHRS_MicroStrain7(AP_ExternalAHRS *_frontend,
AP_ExternalAHRS::state_t &_state): AP_ExternalAHRS_backend(_frontend, _state)
{
auto &sm = AP::serialmanager();
uart = sm.find_serial(AP_SerialManager::SerialProtocol_AHRS, 0);
baudrate = sm.find_baudrate(AP_SerialManager::SerialProtocol_AHRS, 0);
port_num = sm.find_portnum(AP_SerialManager::SerialProtocol_AHRS, 0);
if (!uart) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, LOG_FMT, get_name(), "no UART");
return;
}
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ExternalAHRS_MicroStrain7::update_thread, void), "AHRS", 2048, AP_HAL::Scheduler::PRIORITY_SPI, 0)) {
AP_BoardConfig::allocation_error("MicroStrain7 ExternalAHRS failed to allocate ExternalAHRS update thread");
}
// don't offer IMU by default, at 100Hz it is too slow for many aircraft
set_default_sensors(uint16_t(AP_ExternalAHRS::AvailableSensor::GPS) |
uint16_t(AP_ExternalAHRS::AvailableSensor::BARO) |
uint16_t(AP_ExternalAHRS::AvailableSensor::COMPASS));
hal.scheduler->delay(5000);
if (!initialised()) {
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, LOG_FMT, get_name(), "failed to initialise.");
}
}
void AP_ExternalAHRS_MicroStrain7::update_thread(void)
{
if (!port_open) {
port_open = true;
uart->begin(baudrate);
}
while (true) {
build_packet();
hal.scheduler->delay_microseconds(100);
check_initialise_state();
}
}
void AP_ExternalAHRS_MicroStrain7::check_initialise_state(void)
{
const auto new_init_state = initialised();
// Only send the message after fully booted up, otherwise it gets dropped.
if (!last_init_state && new_init_state && AP_HAL::millis() > 5000) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, LOG_FMT, get_name(), "initialised.");
last_init_state = new_init_state;
}
}
// Builds packets by looking at each individual byte, once a full packet has been read in it checks the checksum then handles the packet.
void AP_ExternalAHRS_MicroStrain7::build_packet()
{
if (uart == nullptr) {
return;
}
WITH_SEMAPHORE(sem);
uint32_t nbytes = MIN(uart->available(), 2048u);
while (nbytes--> 0) {
uint8_t b;
if (!uart->read(b)) {
break;
}
DescriptorSet descriptor;
if (handle_byte(b, descriptor)) {
switch (descriptor) {
case DescriptorSet::IMUData:
post_imu();
break;
case DescriptorSet::GNSSData:
case DescriptorSet::GNSSRecv1:
case DescriptorSet::GNSSRecv2:
break;
case DescriptorSet::FilterData:
post_filter();
break;
case DescriptorSet::BaseCommand:
case DescriptorSet::DMCommand:
case DescriptorSet::SystemCommand:
break;
}
}
}
}
// Posts data from an imu packet to `state` and `handle_external` methods
void AP_ExternalAHRS_MicroStrain7::post_imu() const
{
{
WITH_SEMAPHORE(state.sem);
state.accel = imu_data.accel;
state.gyro = imu_data.gyro;
}
{
// *INDENT-OFF*
AP_ExternalAHRS::ins_data_message_t ins {
accel: imu_data.accel,
gyro: imu_data.gyro,
temperature: -300
};
// *INDENT-ON*
AP::ins().handle_external(ins);
}
#if AP_COMPASS_EXTERNALAHRS_ENABLED
{
// *INDENT-OFF*
AP_ExternalAHRS::mag_data_message_t mag {
field: imu_data.mag
};
// *INDENT-ON*
AP::compass().handle_external(mag);
}
#endif
#if AP_BARO_EXTERNALAHRS_ENABLED
{
// *INDENT-OFF*
const AP_ExternalAHRS::baro_data_message_t baro {
instance: 0,
pressure_pa: imu_data.pressure,
// setting temp to 25 effectively disables barometer temperature calibrations - these are already performed by MicroStrain
temperature: 25,
};
// *INDENT-ON*
AP::baro().handle_external(baro);
}
#endif
}
void AP_ExternalAHRS_MicroStrain7::post_filter() const
{
{
WITH_SEMAPHORE(state.sem);
state.velocity = Vector3f{filter_data.ned_velocity_north, filter_data.ned_velocity_east, filter_data.ned_velocity_down};
state.have_velocity = true;
// TODO the filter does not supply MSL altitude.
// The GNSS system has both MSL and WGS-84 ellipsoid height.
// Use GNSS 0 even though it may be bad.
state.location = Location{filter_data.lat, filter_data.lon, gnss_data[0].msl_altitude, Location::AltFrame::ABSOLUTE};
state.have_location = true;
state.quat = filter_data.attitude_quat;
state.have_quaternion = true;
}
for (int instance = 0; instance < NUM_GNSS_INSTANCES; instance++) {
// *INDENT-OFF*
AP_ExternalAHRS::gps_data_message_t gps {
gps_week: filter_data.week,
ms_tow: filter_data.tow_ms,
fix_type: (uint8_t) gnss_data[instance].fix_type,
satellites_in_view: gnss_data[instance].satellites,
horizontal_pos_accuracy: gnss_data[instance].horizontal_position_accuracy,
vertical_pos_accuracy: gnss_data[instance].vertical_position_accuracy,
horizontal_vel_accuracy: gnss_data[instance].speed_accuracy,
hdop: gnss_data[instance].hdop,
vdop: gnss_data[instance].vdop,
longitude: gnss_data[instance].lon,
latitude: gnss_data[instance].lat,
msl_altitude: gnss_data[instance].msl_altitude,
ned_vel_north: gnss_data[instance].ned_velocity_north,
ned_vel_east: gnss_data[instance].ned_velocity_east,
ned_vel_down: gnss_data[instance].ned_velocity_down,
};
// *INDENT-ON*
if (gps.fix_type >= 3 && !state.have_origin) {
WITH_SEMAPHORE(state.sem);
state.origin = Location{int32_t(gnss_data[instance].lat),
int32_t(gnss_data[instance].lon),
int32_t(gnss_data[instance].msl_altitude),
Location::AltFrame::ABSOLUTE};
state.have_origin = true;
}
AP::gps().handle_external(gps, instance);
}
}
int8_t AP_ExternalAHRS_MicroStrain7::get_port(void) const
{
if (!uart) {
return -1;
}
return port_num;
};
// Get model/type name
const char* AP_ExternalAHRS_MicroStrain7::get_name() const
{
return "MicroStrain7";
}
bool AP_ExternalAHRS_MicroStrain7::healthy(void) const
{
return times_healthy() && filter_healthy();
}
bool AP_ExternalAHRS_MicroStrain7::initialised(void) const
{
const bool got_packets = last_imu_pkt != 0 && last_gps_pkt != 0 && last_filter_pkt != 0;
return got_packets;
}
bool AP_ExternalAHRS_MicroStrain7::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const
{
if (!initialised()) {
hal.util->snprintf(failure_msg, failure_msg_len, LOG_FMT, get_name(), "not initialised");
return false;
}
if (!times_healthy()) {
hal.util->snprintf(failure_msg, failure_msg_len, LOG_FMT, get_name(), "data is stale");
return false;
}
if (!filter_healthy()) {
hal.util->snprintf(failure_msg, failure_msg_len, LOG_FMT, get_name(), "filter is unhealthy");
return false;
}
if (!healthy()) {
hal.util->snprintf(failure_msg, failure_msg_len, LOG_FMT, get_name(), "unhealthy");
return false;
}
static_assert(NUM_GNSS_INSTANCES == 2, "This check only works if there are two GPS types.");
if (gnss_data[0].fix_type < GPS_FIX_TYPE_3D_FIX && gnss_data[1].fix_type < GPS_FIX_TYPE_3D_FIX) {
hal.util->snprintf(failure_msg, failure_msg_len, LOG_FMT, get_name(), "missing 3D GPS fix on either GPS");
return false;
}
return true;
}
void AP_ExternalAHRS_MicroStrain7::get_filter_status(nav_filter_status &status) const
{
memset(&status, 0, sizeof(status));
if (last_imu_pkt != 0 && last_gps_pkt != 0) {
status.flags.initalized = true;
}
if (healthy() && last_imu_pkt != 0) {
status.flags.attitude = true;
status.flags.vert_vel = true;
status.flags.vert_pos = true;
const auto filter_state = static_cast(filter_status.state);
if (filter_state_healthy(filter_state)) {
status.flags.horiz_vel = true;
status.flags.horiz_pos_rel = true;
status.flags.horiz_pos_abs = true;
status.flags.pred_horiz_pos_rel = true;
status.flags.pred_horiz_pos_abs = true;
status.flags.using_gps = true;
}
}
}
void AP_ExternalAHRS_MicroStrain7::send_status_report(GCS_MAVLINK &link) const
{
// prepare flags
uint16_t flags = 0;
nav_filter_status filterStatus;
get_filter_status(filterStatus);
if (filterStatus.flags.attitude) {
flags |= EKF_ATTITUDE;
}
if (filterStatus.flags.horiz_vel) {
flags |= EKF_VELOCITY_HORIZ;
}
if (filterStatus.flags.vert_vel) {
flags |= EKF_VELOCITY_VERT;
}
if (filterStatus.flags.horiz_pos_rel) {
flags |= EKF_POS_HORIZ_REL;
}
if (filterStatus.flags.horiz_pos_abs) {
flags |= EKF_POS_HORIZ_ABS;
}
if (filterStatus.flags.vert_pos) {
flags |= EKF_POS_VERT_ABS;
}
if (filterStatus.flags.terrain_alt) {
flags |= EKF_POS_VERT_AGL;
}
if (filterStatus.flags.const_pos_mode) {
flags |= EKF_CONST_POS_MODE;
}
if (filterStatus.flags.pred_horiz_pos_rel) {
flags |= EKF_PRED_POS_HORIZ_REL;
}
if (filterStatus.flags.pred_horiz_pos_abs) {
flags |= EKF_PRED_POS_HORIZ_ABS;
}
if (!filterStatus.flags.initalized) {
flags |= EKF_UNINITIALIZED;
}
// send message
const float vel_gate = 4; // represents hz value data is posted at
const float pos_gate = 4; // represents hz value data is posted at
const float hgt_gate = 4; // represents hz value data is posted at
const float mag_var = 0; //we may need to change this to be like the other gates, set to 0 because mag is ignored by the ins filter in vectornav
const float velocity_variance {filter_data.ned_velocity_uncertainty.length() / vel_gate};
const float pos_horiz_variance {filter_data.ned_position_uncertainty.xy().length() / pos_gate};
const float pos_vert_variance {filter_data.ned_position_uncertainty.z / hgt_gate};
// No terrain alt sensor on MicroStrain7.
const float terrain_alt_variance {0};
// No airspeed sensor on MicroStrain7.
const float airspeed_variance {0};
mavlink_msg_ekf_status_report_send(link.get_chan(), flags,
velocity_variance, pos_horiz_variance, pos_vert_variance,
mag_var, terrain_alt_variance, airspeed_variance);
}
bool AP_ExternalAHRS_MicroStrain7::times_healthy() const
{
uint32_t now = AP_HAL::millis();
// Expect the following rates:
// * Navigation Filter: 25Hz = 40mS
// * GPS: 2Hz = 500mS
// * IMU: 25Hz = 40mS
// Allow for some slight variance of 10%
constexpr float RateFoS = 1.1;
constexpr uint32_t expected_filter_time_delta_ms = 40;
constexpr uint32_t expected_gps_time_delta_ms = 500;
constexpr uint32_t expected_imu_time_delta_ms = 40;
const bool times_healthy = (now - last_imu_pkt < expected_imu_time_delta_ms * RateFoS && \
now - last_gps_pkt < expected_gps_time_delta_ms * RateFoS && \
now - last_filter_pkt < expected_filter_time_delta_ms * RateFoS);
return times_healthy;
}
bool AP_ExternalAHRS_MicroStrain7::filter_healthy() const
{
const auto filter_state = static_cast(filter_status.state);
const bool filter_healthy = filter_state_healthy(filter_state);
return filter_healthy;
}
bool AP_ExternalAHRS_MicroStrain7::filter_state_healthy(FilterState state)
{
switch (state) {
case FilterState::GQ7_FULL_NAV:
case FilterState::GQ7_AHRS:
return true;
default:
return false;
}
}
#endif // AP_EXTERNAL_AHRS_MICROSTRAIN7_ENABLED