/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef __AP_AIRSPEED_H__ #define __AP_AIRSPEED_H__ #include #include #include #include #include #include #include #include #include class Airspeed_Calibration { public: friend class AP_Airspeed; // constructor Airspeed_Calibration(const AP_Vehicle::FixedWing &parms); // initialise the calibration void init(float initial_ratio); // take current airspeed in m/s and ground speed vector and return // new scaling factor float update(float airspeed, const Vector3f &vg); private: // state of kalman filter for airspeed ratio estimation Matrix3f P; // covarience matrix const float Q0; // process noise matrix top left and middle element const float Q1; // process noise matrix bottom right element Vector3f state; // state vector const float DT; // time delta const AP_Vehicle::FixedWing &aparm; }; class AP_Airspeed { public: // constructor AP_Airspeed(const AP_Vehicle::FixedWing &parms) : _EAS2TAS(1.0f), _healthy(false), _calibration(parms), analog(_pin) { AP_Param::setup_object_defaults(this, var_info); }; void init(void); // read the analog source and update _airspeed void read(void); // calibrate the airspeed. This must be called on startup if the // altitude/climb_rate/acceleration interfaces are ever used void calibrate(); // return the current airspeed in m/s float get_airspeed(void) const { return _airspeed; } // return the unfiltered airspeed in m/s float get_raw_airspeed(void) const { return _raw_airspeed; } // return the current airspeed in cm/s float get_airspeed_cm(void) const { return _airspeed*100; } // return the current airspeed ratio (dimensionless) float get_airspeed_ratio(void) const { return _ratio; } // get temperature if available bool get_temperature(float &temperature); // set the airspeed ratio (dimensionless) void set_airspeed_ratio(float ratio) { _ratio.set(ratio); } // return true if airspeed is enabled, and airspeed use is set bool use(void) const { return _enable && _use && fabsf(_offset) > 0 && _healthy; } // return true if airspeed is enabled bool enabled(void) const { return _enable; } // force disable the airspeed sensor void disable(void) { _enable.set(0); } // used by HIL to set the airspeed void set_HIL(float airspeed) { _airspeed = airspeed; } // return the differential pressure in Pascal for the last // airspeed reading. Used by the calibration code float get_differential_pressure(void) const { return max(_last_pressure, 0); } // set the apparent to true airspeed ratio void set_EAS2TAS(float v) { _EAS2TAS = v; } // get the apparent to true airspeed ratio float get_EAS2TAS(void) const { return _EAS2TAS; } // update airspeed ratio calibration void update_calibration(const Vector3f &vground); // log data to MAVLink void log_mavlink_send(mavlink_channel_t chan, const Vector3f &vground); // return health status of sensor bool healthy(void) const { return _healthy; } // return time in ms of last update uint32_t last_update_ms(void) const { return _last_update_ms; } void setHIL(float airspeed, float diff_pressure, float temperature); static const struct AP_Param::GroupInfo var_info[]; enum pitot_tube_order { PITOT_TUBE_ORDER_POSITIVE =0, PITOT_TUBE_ORDER_NEGATIVE =1, PITOT_TUBE_ORDER_AUTO =2}; private: AP_Float _offset; AP_Float _ratio; AP_Int8 _use; AP_Int8 _enable; AP_Int8 _pin; AP_Int8 _autocal; AP_Int8 _tube_order; float _raw_airspeed; float _airspeed; float _last_pressure; float _EAS2TAS; bool _healthy; uint32_t _last_update_ms; Airspeed_Calibration _calibration; float _last_saved_ratio; uint8_t _counter; float get_pressure(void); AP_Airspeed_Analog analog; #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 AP_Airspeed_PX4 digital; #else AP_Airspeed_I2C digital; #endif }; // the virtual pin for digital airspeed sensors #define AP_AIRSPEED_I2C_PIN 65 #endif // __AP_AIRSPEED_H__