#!/usr/bin/env python ''' simple rover simulator ''' from rover import Rover import util, time, os, sys, math import socket, struct import select, errno sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..', '..', '..', 'mavlink', 'pymavlink')) def sim_send(a): '''send flight information to mavproxy''' from math import degrees earth_rates = util.BodyRatesToEarthRates(a.dcm, a.gyro) (roll, pitch, yaw) = a.dcm.to_euler() buf = struct.pack('<17dI', a.latitude, a.longitude, a.altitude, degrees(yaw), a.velocity.x, a.velocity.y, a.velocity.z, a.accelerometer.x, a.accelerometer.y, a.accelerometer.z, degrees(earth_rates.x), degrees(earth_rates.y), degrees(earth_rates.z), degrees(roll), degrees(pitch), degrees(yaw), math.sqrt(a.velocity.x*a.velocity.x + a.velocity.y*a.velocity.y), 0x4c56414f) try: sim_out.send(buf) except socket.error as e: if not e.errno in [ errno.ECONNREFUSED ]: raise def sim_recv(state): '''receive control information from SITL''' try: buf = sim_in.recv(28) except socket.error as e: if not e.errno in [ errno.EAGAIN, errno.EWOULDBLOCK ]: raise return if len(buf) != 28: print('len=%u' % len(buf)) return control = list(struct.unpack('<14H', buf)) pwm = control[0:11] # map steering and throttle to -1/1 state.steering = (pwm[0]-1500)/500.0 state.throttle = (pwm[2]-1500)/500.0 # print("steering=%f throttle=%f pwm=%s" % (state.steering, state.throttle, str(pwm))) def interpret_address(addrstr): '''interpret a IP:port string''' a = addrstr.split(':') a[1] = int(a[1]) return tuple(a) class ControlState: def __init__(self): # steering from -1 to 1, where -1 is left, 1 is right self.steering = 0 # throttle from -1 to 1, where -1 is full reverse, 1 is full forward self.throttle = 0 ################## # main program from optparse import OptionParser parser = OptionParser("sim_rover.py [options]") parser.add_option("--simin", dest="simin", help="SIM input (IP:port)", default="127.0.0.1:5502") parser.add_option("--simout", dest="simout", help="SIM output (IP:port)", default="127.0.0.1:5501") parser.add_option("--home", dest="home", type='string', default=None, help="home lat,lng,alt,hdg (required)") parser.add_option("--rate", dest="rate", type='int', help="SIM update rate", default=100) parser.add_option("--skid-steering", action='store_true', default=False, help="Use skid steering") (opts, args) = parser.parse_args() for m in [ 'home' ]: if not opts.__dict__[m]: print("Missing required option '%s'" % m) parser.print_help() sys.exit(1) # UDP socket addresses sim_out_address = interpret_address(opts.simout) sim_in_address = interpret_address(opts.simin) # setup input from SITL sim_in = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sim_in.bind(sim_in_address) sim_in.setblocking(0) # setup output to SITL sim_out = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sim_out.connect(sim_out_address) sim_out.setblocking(0) # create the quadcopter model a = Rover(skid_steering=opts.skid_steering) # initial controls state state = ControlState() # parse home v = opts.home.split(',') if len(v) != 4: print("home should be lat,lng,alt,hdg") sys.exit(1) a.home_latitude = float(v[0]) a.home_longitude = float(v[1]) a.home_altitude = float(v[2]) a.altitude = a.home_altitude a.yaw = float(v[3]) a.latitude = a.home_latitude a.longitude = a.home_longitude print("Starting at lat=%f lon=%f alt=%f heading=%.1f" % ( a.home_latitude, a.home_longitude, a.altitude, a.yaw)) frame_time = 1.0/opts.rate sleep_overhead = 0 while True: frame_start = time.time() sim_recv(state) a.update(state) sim_send(a) t = time.time() frame_end = time.time() if frame_end - frame_start < frame_time: dt = frame_time - (frame_end - frame_start) dt -= sleep_overhead if dt > 0: time.sleep(dt) sleep_overhead = 0.99*sleep_overhead + 0.01*(time.time() - frame_end)