/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // forward declarations to make compiler happy static void do_takeoff(const AP_Mission::Mission_Command& cmd); static void do_nav_wp(const AP_Mission::Mission_Command& cmd); static void do_land(const AP_Mission::Mission_Command& cmd); static void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd); static void do_loiter_turns(const AP_Mission::Mission_Command& cmd); static void do_loiter_time(const AP_Mission::Mission_Command& cmd); static void do_wait_delay(const AP_Mission::Mission_Command& cmd); static void do_within_distance(const AP_Mission::Mission_Command& cmd); static void do_change_alt(const AP_Mission::Mission_Command& cmd); static void do_change_speed(const AP_Mission::Mission_Command& cmd); static void do_set_home(const AP_Mission::Mission_Command& cmd); /********************************************************************************/ // Command Event Handlers /********************************************************************************/ /********************************************************************************/ // Command Event Handlers /********************************************************************************/ static bool start_command(const AP_Mission::Mission_Command& cmd) { // log when new commands start if (should_log(MASK_LOG_CMD)) { Log_Write_Cmd(cmd); } // special handling for nav vs non-nav commands if (AP_Mission::is_nav_cmd(cmd)) { // set land_complete to false to stop us zeroing the throttle auto_state.land_complete = false; // set takeoff_complete to true so we don't add extra evevator // except in a takeoff auto_state.takeoff_complete = true; gcs_send_text_fmt(PSTR("Executing nav command ID #%i"),cmd.id); } else { gcs_send_text_fmt(PSTR("Executing command ID #%i"),cmd.id); } switch(cmd.id) { case MAV_CMD_NAV_TAKEOFF: do_takeoff(cmd); break; case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint do_nav_wp(cmd); break; case MAV_CMD_NAV_LAND: // LAND to Waypoint do_land(cmd); break; case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely do_loiter_unlimited(cmd); break; case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times do_loiter_turns(cmd); break; case MAV_CMD_NAV_LOITER_TIME: do_loiter_time(cmd); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: set_mode(RTL); break; // Conditional commands case MAV_CMD_CONDITION_DELAY: do_wait_delay(cmd); break; case MAV_CMD_CONDITION_DISTANCE: do_within_distance(cmd); break; case MAV_CMD_CONDITION_CHANGE_ALT: do_change_alt(cmd); break; // Do commands case MAV_CMD_DO_CHANGE_SPEED: do_change_speed(cmd); break; case MAV_CMD_DO_SET_HOME: do_set_home(cmd); break; case MAV_CMD_DO_SET_SERVO: ServoRelayEvents.do_set_servo(cmd.content.servo.channel, cmd.content.servo.pwm); break; case MAV_CMD_DO_SET_RELAY: ServoRelayEvents.do_set_relay(cmd.content.relay.num, cmd.content.relay.state); break; case MAV_CMD_DO_REPEAT_SERVO: ServoRelayEvents.do_repeat_servo(cmd.content.repeat_servo.channel, cmd.content.repeat_servo.pwm, cmd.content.repeat_servo.repeat_count, cmd.content.repeat_servo.cycle_time * 1000.0f); break; case MAV_CMD_DO_REPEAT_RELAY: ServoRelayEvents.do_repeat_relay(cmd.content.repeat_relay.num, cmd.content.repeat_relay.repeat_count, cmd.content.repeat_relay.cycle_time * 1000.0f); break; case MAV_CMD_DO_INVERTED_FLIGHT: if (cmd.p1 == 0 || cmd.p1 == 1) { auto_state.inverted_flight = (bool)cmd.p1; gcs_send_text_fmt(PSTR("Set inverted %u"), cmd.p1); } break; #if CAMERA == ENABLED case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| break; case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| break; case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty| do_take_picture(); break; case MAV_CMD_DO_SET_CAM_TRIGG_DIST: camera.set_trigger_distance(cmd.content.cam_trigg_dist.meters); break; #endif #if MOUNT == ENABLED // Sets the region of interest (ROI) for a sensor set or the // vehicle itself. This can then be used by the vehicles control // system to control the vehicle attitude and the attitude of various // devices such as cameras. // |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| case MAV_CMD_DO_SET_ROI: if (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0) { // switch off the camera tracking if enabled if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { camera_mount.set_mode_to_default(); } } else { // send the command to the camera mount camera_mount.set_roi_cmd(&cmd.content.location); } break; case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty| camera_mount.configure_cmd(); break; case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty| camera_mount.control_cmd(); break; #endif } return true; } /******************************************************************************* Verify command Handlers Each type of mission element has a "verify" operation. The verify operation returns true when the mission element has completed and we should move onto the next mission element. *******************************************************************************/ static bool verify_command(const AP_Mission::Mission_Command& cmd) // Returns true if command complete { switch(cmd.id) { case MAV_CMD_NAV_TAKEOFF: return verify_takeoff(); case MAV_CMD_NAV_LAND: return verify_land(); case MAV_CMD_NAV_WAYPOINT: return verify_nav_wp(); case MAV_CMD_NAV_LOITER_UNLIM: return verify_loiter_unlim(); case MAV_CMD_NAV_LOITER_TURNS: return verify_loiter_turns(); case MAV_CMD_NAV_LOITER_TIME: return verify_loiter_time(); case MAV_CMD_NAV_RETURN_TO_LAUNCH: return verify_RTL(); // Conditional commands case MAV_CMD_CONDITION_DELAY: return verify_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: return verify_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: return verify_change_alt(); break; // do commands (always return true) case MAV_CMD_DO_CHANGE_SPEED: case MAV_CMD_DO_SET_HOME: case MAV_CMD_DO_SET_SERVO: case MAV_CMD_DO_SET_RELAY: case MAV_CMD_DO_REPEAT_SERVO: case MAV_CMD_DO_REPEAT_RELAY: case MAV_CMD_DO_CONTROL_VIDEO: case MAV_CMD_DO_DIGICAM_CONFIGURE: case MAV_CMD_DO_DIGICAM_CONTROL: case MAV_CMD_DO_SET_CAM_TRIGG_DIST: case MAV_CMD_NAV_ROI: case MAV_CMD_DO_MOUNT_CONFIGURE: case MAV_CMD_DO_MOUNT_CONTROL: case MAV_CMD_DO_INVERTED_FLIGHT: return true; default: // error message if (AP_Mission::is_nav_cmd(cmd)) { gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_nav: Invalid or no current Nav cmd")); }else{ gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_conditon: Invalid or no current Condition cmd")); } // return true so that we do not get stuck at this command return true; } } /********************************************************************************/ // Nav (Must) commands /********************************************************************************/ static void do_RTL(void) { control_mode = RTL; prev_WP_loc = current_loc; next_WP_loc = rally.calc_best_rally_or_home_location(current_loc, get_RTL_altitude()); if (g.loiter_radius < 0) { loiter.direction = -1; } else { loiter.direction = 1; } setup_glide_slope(); setup_turn_angle(); if (should_log(MASK_LOG_MODE)) Log_Write_Mode(control_mode); } static void do_takeoff(const AP_Mission::Mission_Command& cmd) { set_next_WP(cmd.content.location); // pitch in deg, airspeed m/s, throttle %, track WP 1 or 0 auto_state.takeoff_pitch_cd = (int)cmd.p1 * 100; auto_state.takeoff_altitude_cm = next_WP_loc.alt; next_WP_loc.lat = home.lat + 10; next_WP_loc.lng = home.lng + 10; auto_state.takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction // Flag also used to override "on the ground" throttle disable } static void do_nav_wp(const AP_Mission::Mission_Command& cmd) { set_next_WP(cmd.content.location); } static void do_land(const AP_Mission::Mission_Command& cmd) { set_next_WP(cmd.content.location); } static void loiter_set_direction_wp(const AP_Mission::Mission_Command& cmd) { if (cmd.content.location.flags.loiter_ccw) { loiter.direction = -1; } else { loiter.direction = 1; } } static void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd) { set_next_WP(cmd.content.location); loiter_set_direction_wp(cmd); } static void do_loiter_turns(const AP_Mission::Mission_Command& cmd) { set_next_WP(cmd.content.location); loiter.total_cd = (uint32_t)(LOWBYTE(cmd.p1)) * 36000UL; loiter_set_direction_wp(cmd); } static void do_loiter_time(const AP_Mission::Mission_Command& cmd) { set_next_WP(cmd.content.location); // we set start_time_ms when we reach the waypoint loiter.start_time_ms = 0; loiter.time_max_ms = cmd.p1 * (uint32_t)1000; // units are seconds loiter_set_direction_wp(cmd); } /********************************************************************************/ // Verify Nav (Must) commands /********************************************************************************/ static bool verify_takeoff() { if (ahrs.yaw_initialised()) { if (steer_state.hold_course_cd == -1) { // save our current course to take off steer_state.hold_course_cd = ahrs.yaw_sensor; gcs_send_text_fmt(PSTR("Holding course %ld"), steer_state.hold_course_cd); } } if (steer_state.hold_course_cd != -1) { // call navigation controller for heading hold nav_controller->update_heading_hold(steer_state.hold_course_cd); } else { nav_controller->update_level_flight(); } // see if we have reached takeoff altitude if (adjusted_altitude_cm() > auto_state.takeoff_altitude_cm) { steer_state.hold_course_cd = -1; auto_state.takeoff_complete = true; next_WP_loc = prev_WP_loc = current_loc; #if GEOFENCE_ENABLED == ENABLED if (g.fence_autoenable == 1) { if (! geofence_set_enabled(true, AUTO_TOGGLED)) { gcs_send_text_P(SEVERITY_HIGH, PSTR("Enable fence failed (cannot autoenable")); } else { gcs_send_text_P(SEVERITY_HIGH, PSTR("Fence enabled. (autoenabled)")); } } #endif return true; } else { return false; } } // we are executing a landing static bool verify_land() { // we don't 'verify' landing in the sense that it never completes, // so we don't verify command completion. Instead we use this to // adjust final landing parameters // Set land_complete if we are within 2 seconds distance or within // 3 meters altitude of the landing point if ((wp_distance <= (g.land_flare_sec * gps.ground_speed())) || (adjusted_altitude_cm() <= next_WP_loc.alt + g.land_flare_alt*100)) { auto_state.land_complete = true; if (steer_state.hold_course_cd == -1) { // we have just reached the threshold of to flare for landing. // We now don't want to do any radical // turns, as rolling could put the wings into the runway. // To prevent further turns we set steer_state.hold_course_cd to the // current heading. Previously we set this to // crosstrack_bearing, but the xtrack bearing can easily // be quite large at this point, and that could induce a // sudden large roll correction which is very nasty at // this point in the landing. steer_state.hold_course_cd = ahrs.yaw_sensor; gcs_send_text_fmt(PSTR("Land Complete - Hold course %ld"), steer_state.hold_course_cd); } if (gps.ground_speed() < 3) { // reload any airspeed or groundspeed parameters that may have // been set for landing. We don't do this till ground // speed drops below 3.0 m/s as otherwise we will change // target speeds too early. g.airspeed_cruise_cm.load(); g.min_gndspeed_cm.load(); aparm.throttle_cruise.load(); } } if (steer_state.hold_course_cd != -1) { // recalc bearing error with hold_course; nav_controller->update_heading_hold(steer_state.hold_course_cd); } else { nav_controller->update_waypoint(prev_WP_loc, next_WP_loc); } return false; } static bool verify_nav_wp() { steer_state.hold_course_cd = -1; nav_controller->update_waypoint(prev_WP_loc, next_WP_loc); // see if the user has specified a maximum distance to waypoint if (g.waypoint_max_radius > 0 && wp_distance > (uint16_t)g.waypoint_max_radius) { if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) { // this is needed to ensure completion of the waypoint prev_WP_loc = current_loc; } return false; } if (wp_distance <= nav_controller->turn_distance(g.waypoint_radius, auto_state.next_turn_angle)) { gcs_send_text_fmt(PSTR("Reached Waypoint #%i dist %um"), (unsigned)mission.get_current_nav_cmd().index, (unsigned)get_distance(current_loc, next_WP_loc)); return true; } // have we flown past the waypoint? if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) { gcs_send_text_fmt(PSTR("Passed Waypoint #%i dist %um"), (unsigned)mission.get_current_nav_cmd().index, (unsigned)get_distance(current_loc, next_WP_loc)); return true; } return false; } static bool verify_loiter_unlim() { update_loiter(); return false; } static bool verify_loiter_time() { update_loiter(); if (loiter.start_time_ms == 0) { if (nav_controller->reached_loiter_target()) { // we've reached the target, start the timer loiter.start_time_ms = millis(); } } else if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) { gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER time complete")); return true; } return false; } static bool verify_loiter_turns() { update_loiter(); if (loiter.sum_cd > loiter.total_cd) { loiter.total_cd = 0; gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER orbits complete")); // clear the command queue; return true; } return false; } static bool verify_RTL() { update_loiter(); if (wp_distance <= (uint32_t)max(g.waypoint_radius,0) || nav_controller->reached_loiter_target()) { gcs_send_text_P(SEVERITY_LOW,PSTR("Reached home")); return true; } else { return false; } } /********************************************************************************/ // Condition (May) commands /********************************************************************************/ static void do_wait_delay(const AP_Mission::Mission_Command& cmd) { condition_start = millis(); condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds } static void do_change_alt(const AP_Mission::Mission_Command& cmd) { condition_rate = labs((int)cmd.content.location.lat); // climb rate in cm/s condition_value = cmd.content.location.alt; // To-Do: ensure this altitude is an absolute altitude? if (condition_value < adjusted_altitude_cm()) { condition_rate = -condition_rate; } set_target_altitude_current_adjusted(); change_target_altitude(condition_rate/10); next_WP_loc.alt = condition_value; // For future nav calculations reset_offset_altitude(); } static void do_within_distance(const AP_Mission::Mission_Command& cmd) { condition_value = cmd.content.distance.meters; } /********************************************************************************/ // Verify Condition (May) commands /********************************************************************************/ static bool verify_wait_delay() { if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) { condition_value = 0; return true; } return false; } static bool verify_change_alt() { if( (condition_rate>=0 && adjusted_altitude_cm() >= condition_value) || (condition_rate<=0 && adjusted_altitude_cm() <= condition_value)) { condition_value = 0; return true; } // condition_rate is climb rate in cm/s. // We divide by 10 because this function is called at 10hz change_target_altitude(condition_rate/10); return false; } static bool verify_within_distance() { if (wp_distance < max(condition_value,0)) { condition_value = 0; return true; } return false; } /********************************************************************************/ // Do (Now) commands /********************************************************************************/ static void do_loiter_at_location() { if (g.loiter_radius < 0) { loiter.direction = -1; } else { loiter.direction = 1; } next_WP_loc = current_loc; } static void do_change_speed(const AP_Mission::Mission_Command& cmd) { switch (cmd.content.speed.speed_type) { case 0: // Airspeed if (cmd.content.speed.target_ms > 0) { g.airspeed_cruise_cm.set(cmd.content.speed.target_ms * 100); gcs_send_text_fmt(PSTR("Set airspeed %u m/s"), (unsigned)cmd.content.speed.target_ms); } break; case 1: // Ground speed gcs_send_text_fmt(PSTR("Set groundspeed %u"), (unsigned)cmd.content.speed.target_ms); g.min_gndspeed_cm.set(cmd.content.speed.target_ms * 100); break; } if (cmd.content.speed.throttle_pct > 0 && cmd.content.speed.throttle_pct <= 100) { gcs_send_text_fmt(PSTR("Set throttle %u"), (unsigned)cmd.content.speed.throttle_pct); aparm.throttle_cruise.set(cmd.content.speed.throttle_pct); } } static void do_set_home(const AP_Mission::Mission_Command& cmd) { if (cmd.p1 == 1 && gps.status() >= AP_GPS::GPS_OK_FIX_3D) { init_home(); } else { ahrs.set_home(cmd.content.location); home_is_set = true; } } // do_take_picture - take a picture with the camera library static void do_take_picture() { #if CAMERA == ENABLED camera.trigger_pic(); if (should_log(MASK_LOG_CAMERA)) { DataFlash.Log_Write_Camera(ahrs, gps, current_loc); } #endif } // start_command_callback - callback function called from ap-mission when it begins a new mission command // we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode static bool start_command_callback(const AP_Mission::Mission_Command &cmd) { if (control_mode == AUTO) { return start_command(cmd); } return true; } // verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run // we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode static bool verify_command_callback(const AP_Mission::Mission_Command& cmd) { if (control_mode == AUTO) { return verify_command(cmd); } return false; } // exit_mission_callback - callback function called from ap-mission when the mission has completed // we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode static void exit_mission_callback() { if (control_mode == AUTO) { gcs_send_text_fmt(PSTR("Returning to Home")); memset(&auto_rtl_command, 0, sizeof(auto_rtl_command)); auto_rtl_command.content.location = rally.calc_best_rally_or_home_location(current_loc, get_RTL_altitude()); auto_rtl_command.id = MAV_CMD_NAV_LOITER_UNLIM; setup_glide_slope(); setup_turn_angle(); start_command(auto_rtl_command); } }