/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * AP_OpticalFlow_SITL.cpp - SITL emulation of optical flow sensor. */ #include "AP_OpticalFlow_SITL.h" #if AP_OPTICALFLOW_SITL_ENABLED #include <AP_HAL/AP_HAL.h> #include <SITL/SITL.h> void AP_OpticalFlow_SITL::update(void) { auto *_sitl = AP::sitl(); if (!_sitl->flow_enable) { return; } // update at the requested rate uint32_t now = AP_HAL::millis(); if (now - last_flow_ms < 1000*(1.0f/_sitl->flow_rate)) { return; } last_flow_ms = now; Vector3f gyro(radians(_sitl->state.rollRate), radians(_sitl->state.pitchRate), radians(_sitl->state.yawRate)); AP_OpticalFlow::OpticalFlow_state state; // NED velocity vector in m/s Vector3f velocity(_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD); // a rotation matrix following DCM conventions Matrix3f rotmat; rotmat.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(_sitl->state.yawDeg)); state.surface_quality = 51; // sensor position offset in body frame Vector3f posRelSensorBF = _sitl->optflow_pos_offset; // estimate range to centre of image float range; if (rotmat.c.z > 0.05f && _sitl->height_agl > 0) { Vector3f relPosSensorEF = rotmat * posRelSensorBF; range = (_sitl->height_agl - relPosSensorEF.z) / rotmat.c.z; } else { range = 1e38f; } // Calculate relative velocity in sensor frame assuming no misalignment between sensor and vehicle body axes Vector3f relVelSensor = rotmat.mul_transpose(velocity); // correct relative velocity for rotation rates and sensor offset relVelSensor += gyro % posRelSensorBF; // scaling based on parameters const Vector2f flowScaler = _flowScaler(); const float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x; const float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y; // Divide velocity by range and add body rates to get predicted sensed angular // optical rates relative to X and Y sensor axes assuming no misalignment or scale // factor error. Note - these are instantaneous values. The sensor sums these values across the interval from the last // poll to provide a delta angle across the interface state.flowRate.x = (-relVelSensor.y/range + gyro.x + _sitl->flow_noise * rand_float()) * flowScaleFactorX; state.flowRate.y = (relVelSensor.x/range + gyro.y + _sitl->flow_noise * rand_float()) * flowScaleFactorY; // The flow sensors body rates are assumed to be the same as the vehicle body rates (ie no misalignment) // Note - these are instantaneous values. The sensor sums these values across the interval from the last // poll to provide a delta angle across the interface. state.bodyRate = Vector2f(gyro.x, gyro.y); optflow_data[next_optflow_index++] = state; if (next_optflow_index >= optflow_delay+1) { next_optflow_index = 0; } state = optflow_data[next_optflow_index]; if (_sitl->flow_delay != optflow_delay) { // cope with updates to the delay control if (_sitl->flow_delay > 0 && (uint8_t)(_sitl->flow_delay) > ARRAY_SIZE(optflow_data)) { _sitl->flow_delay.set(ARRAY_SIZE(optflow_data)); } optflow_delay = _sitl->flow_delay; for (uint8_t i=0; i<optflow_delay; i++) { optflow_data[i] = state; } } _applyYaw(state.flowRate); // copy results to front end _update_frontend(state); } #endif // AP_OPTICALFLOW_SITL_ENABLED