#include "Copter.h" #if MODE_GUIDED_ENABLED == ENABLED /* * Init and run calls for guided flight mode */ #ifndef GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM # define GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM 500 // point nose at target if it is more than 5m away #endif #define GUIDED_POSVEL_TIMEOUT_MS 3000 // guided mode's position-velocity controller times out after 3seconds with no new updates #define GUIDED_ATTITUDE_TIMEOUT_MS 1000 // guided mode's attitude controller times out after 1 second with no new updates static Vector3f guided_pos_target_cm; // position target (used by posvel controller only) static Vector3f guided_vel_target_cms; // velocity target (used by velocity controller and posvel controller) static uint32_t posvel_update_time_ms; // system time of last target update to posvel controller (i.e. position and velocity update) static uint32_t vel_update_time_ms; // system time of last target update to velocity controller struct { uint32_t update_time_ms; float roll_cd; float pitch_cd; float yaw_cd; float yaw_rate_cds; float climb_rate_cms; // climb rate in cms. Used if use_thrust is false float thrust; // thrust from -1 to 1. Used if use_thrust is true bool use_yaw_rate; bool use_thrust; } static guided_angle_state; struct Guided_Limit { uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked float alt_min_cm; // lower altitude limit in cm above home (0 = no limit) float alt_max_cm; // upper altitude limit in cm above home (0 = no limit) float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit) uint32_t start_time;// system time in milliseconds that control was handed to the external computer Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit } guided_limit; // guided_init - initialise guided controller bool ModeGuided::init(bool ignore_checks) { // start in position control mode pos_control_start(); send_notification = false; return true; } // guided_run - runs the guided controller // should be called at 100hz or more void ModeGuided::run() { // call the correct auto controller switch (guided_mode) { case Guided_TakeOff: // run takeoff controller takeoff_run(); break; case Guided_WP: // run position controller pos_control_run(); if (send_notification && wp_nav->reached_wp_destination()) { send_notification = false; gcs().send_mission_item_reached_message(0); } break; case Guided_Velocity: // run velocity controller vel_control_run(); break; case Guided_PosVel: // run position-velocity controller posvel_control_run(); break; case Guided_Angle: // run angle controller angle_control_run(); break; } } bool ModeGuided::allows_arming(bool from_gcs) const { // always allow arming from the ground station if (from_gcs) { return true; } // optionally allow arming from the transmitter return (copter.g2.guided_options & (uint32_t)Options::AllowArmingFromTX) != 0; }; // do_user_takeoff_start - initialises waypoint controller to implement take-off bool ModeGuided::do_user_takeoff_start(float takeoff_alt_cm) { guided_mode = Guided_TakeOff; // initialise wpnav destination Location target_loc = copter.current_loc; Location::AltFrame frame = Location::AltFrame::ABOVE_HOME; if (wp_nav->rangefinder_used_and_healthy() && wp_nav->get_terrain_source() == AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER && takeoff_alt_cm < copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)) { // can't takeoff downwards if (takeoff_alt_cm <= copter.rangefinder_state.alt_cm) { return false; } frame = Location::AltFrame::ABOVE_TERRAIN; } target_loc.set_alt_cm(takeoff_alt_cm, frame); if (!wp_nav->set_wp_destination(target_loc)) { // failure to set destination can only be because of missing terrain data AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION); // failure is propagated to GCS with NAK return false; } // initialise yaw auto_yaw.set_mode(AUTO_YAW_HOLD); // clear i term when we're taking off set_throttle_takeoff(); // get initial alt for WP_NAVALT_MIN auto_takeoff_set_start_alt(); return true; } // initialise guided mode's position controller void ModeGuided::pos_control_start() { // set to position control mode guided_mode = Guided_WP; // initialise waypoint and spline controller wp_nav->wp_and_spline_init(); // initialise wpnav to stopping point Vector3f stopping_point; wp_nav->get_wp_stopping_point(stopping_point); // no need to check return status because terrain data is not used wp_nav->set_wp_destination(stopping_point, false); // initialise yaw auto_yaw.set_mode_to_default(false); } // initialise guided mode's velocity controller void ModeGuided::vel_control_start() { // set guided_mode to velocity controller guided_mode = Guided_Velocity; // initialise horizontal speed, acceleration pos_control->set_max_speed_xy(wp_nav->get_default_speed_xy()); pos_control->set_max_accel_xy(wp_nav->get_wp_acceleration()); // initialize vertical speeds and acceleration pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up); pos_control->set_max_accel_z(g.pilot_accel_z); // initialise velocity controller pos_control->init_vel_controller_xyz(); } // initialise guided mode's posvel controller void ModeGuided::posvel_control_start() { // set guided_mode to velocity controller guided_mode = Guided_PosVel; pos_control->init_xy_controller(); // set speed and acceleration from wpnav's speed and acceleration pos_control->set_max_speed_xy(wp_nav->get_default_speed_xy()); pos_control->set_max_accel_xy(wp_nav->get_wp_acceleration()); const Vector3f& curr_pos = inertial_nav.get_position(); const Vector3f& curr_vel = inertial_nav.get_velocity(); // set target position and velocity to current position and velocity pos_control->set_xy_target(curr_pos.x, curr_pos.y); pos_control->set_desired_velocity_xy(curr_vel.x, curr_vel.y); // set vertical speed and acceleration pos_control->set_max_speed_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up()); pos_control->set_max_accel_z(wp_nav->get_accel_z()); // pilot always controls yaw auto_yaw.set_mode(AUTO_YAW_HOLD); } bool ModeGuided::is_taking_off() const { return guided_mode == Guided_TakeOff; } // initialise guided mode's angle controller void ModeGuided::angle_control_start() { // set guided_mode to velocity controller guided_mode = Guided_Angle; // set vertical speed and acceleration pos_control->set_max_speed_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up()); pos_control->set_max_accel_z(wp_nav->get_accel_z()); // initialise position and desired velocity if (!pos_control->is_active_z()) { pos_control->set_alt_target_to_current_alt(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); } // initialise targets guided_angle_state.update_time_ms = millis(); guided_angle_state.roll_cd = ahrs.roll_sensor; guided_angle_state.pitch_cd = ahrs.pitch_sensor; guided_angle_state.yaw_cd = ahrs.yaw_sensor; guided_angle_state.climb_rate_cms = 0.0f; guided_angle_state.yaw_rate_cds = 0.0f; guided_angle_state.use_yaw_rate = false; // pilot always controls yaw auto_yaw.set_mode(AUTO_YAW_HOLD); } // guided_set_destination - sets guided mode's target destination // Returns true if the fence is enabled and guided waypoint is within the fence // else return false if the waypoint is outside the fence bool ModeGuided::set_destination(const Vector3f& destination, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool terrain_alt) { #if AC_FENCE == ENABLED // reject destination if outside the fence const Location dest_loc(destination); if (!copter.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // ensure we are in position control mode if (guided_mode != Guided_WP) { pos_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // no need to check return status because terrain data is not used wp_nav->set_wp_destination(destination, terrain_alt); // log target copter.Log_Write_GuidedTarget(guided_mode, destination, Vector3f()); send_notification = true; return true; } bool ModeGuided::get_wp(Location& destination) { if (guided_mode != Guided_WP) { return false; } return wp_nav->get_oa_wp_destination(destination); } // sets guided mode's target from a Location object // returns false if destination could not be set (probably caused by missing terrain data) // or if the fence is enabled and guided waypoint is outside the fence bool ModeGuided::set_destination(const Location& dest_loc, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw) { #if AC_FENCE == ENABLED // reject destination outside the fence. // Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails if (!copter.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // ensure we are in position control mode if (guided_mode != Guided_WP) { pos_control_start(); } if (!wp_nav->set_wp_destination(dest_loc)) { // failure to set destination can only be because of missing terrain data AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION); // failure is propagated to GCS with NAK return false; } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // log target copter.Log_Write_GuidedTarget(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt),Vector3f()); send_notification = true; return true; } // guided_set_velocity - sets guided mode's target velocity void ModeGuided::set_velocity(const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request) { // check we are in velocity control mode if (guided_mode != Guided_Velocity) { vel_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // record velocity target guided_vel_target_cms = velocity; vel_update_time_ms = millis(); // log target if (log_request) { copter.Log_Write_GuidedTarget(guided_mode, Vector3f(), velocity); } } // set guided mode posvel target bool ModeGuided::set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw) { #if AC_FENCE == ENABLED // reject destination if outside the fence const Location dest_loc(destination); if (!copter.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // check we are in velocity control mode if (guided_mode != Guided_PosVel) { posvel_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); posvel_update_time_ms = millis(); guided_pos_target_cm = destination; guided_vel_target_cms = velocity; copter.pos_control->set_pos_target(guided_pos_target_cm); // log target copter.Log_Write_GuidedTarget(guided_mode, destination, velocity); return true; } // set guided mode angle target and climbrate void ModeGuided::set_angle(const Quaternion &q, float climb_rate_cms_or_thrust, bool use_yaw_rate, float yaw_rate_rads, bool use_thrust) { // check we are in velocity control mode if (guided_mode != Guided_Angle) { angle_control_start(); } // convert quaternion to euler angles q.to_euler(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd); guided_angle_state.roll_cd = ToDeg(guided_angle_state.roll_cd) * 100.0f; guided_angle_state.pitch_cd = ToDeg(guided_angle_state.pitch_cd) * 100.0f; guided_angle_state.yaw_cd = wrap_180_cd(ToDeg(guided_angle_state.yaw_cd) * 100.0f); guided_angle_state.yaw_rate_cds = ToDeg(yaw_rate_rads) * 100.0f; guided_angle_state.use_yaw_rate = use_yaw_rate; guided_angle_state.use_thrust = use_thrust; if (use_thrust) { guided_angle_state.thrust = climb_rate_cms_or_thrust; guided_angle_state.climb_rate_cms = 0.0f; } else { guided_angle_state.thrust = 0.0f; guided_angle_state.climb_rate_cms = climb_rate_cms_or_thrust; } guided_angle_state.update_time_ms = millis(); // log target copter.Log_Write_GuidedTarget(guided_mode, Vector3f(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd), Vector3f(0.0f, 0.0f, climb_rate_cms_or_thrust)); } // guided_takeoff_run - takeoff in guided mode // called by guided_run at 100hz or more void ModeGuided::takeoff_run() { auto_takeoff_run(); if (wp_nav->reached_wp_destination()) { // optionally retract landing gear copter.landinggear.retract_after_takeoff(); // switch to position control mode but maintain current target const Vector3f target = wp_nav->get_wp_destination(); set_destination(target, false, 0, false, 0, false, wp_nav->origin_and_destination_are_terrain_alt()); } } // guided_pos_control_run - runs the guided position controller // called from guided_run void ModeGuided::pos_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { make_safe_spool_down(); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller copter.failsafe_terrain_set_status(wp_nav->update_wpnav()); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from waypoint controller, yaw rate from mavlink command or mission item attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), auto_yaw.rate_cds()); } else { // roll, pitch from waypoint controller, yaw heading from GCS or auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), auto_yaw.yaw(), true); } } // guided_vel_control_run - runs the guided velocity controller // called from guided_run void ModeGuided::vel_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // landed with positive desired climb rate, initiate takeoff if (motors->armed() && copter.ap.auto_armed && copter.ap.land_complete && is_positive(guided_vel_target_cms.z)) { zero_throttle_and_relax_ac(); motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); if (motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) { set_land_complete(false); set_throttle_takeoff(); } return; } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { make_safe_spool_down(); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set velocity to zero and stop rotating if no updates received for 3 seconds uint32_t tnow = millis(); if (tnow - vel_update_time_ms > GUIDED_POSVEL_TIMEOUT_MS) { if (!pos_control->get_desired_velocity().is_zero()) { set_desired_velocity_with_accel_and_fence_limits(Vector3f(0.0f, 0.0f, 0.0f)); } if (auto_yaw.mode() == AUTO_YAW_RATE) { auto_yaw.set_rate(0.0f); } } else { set_desired_velocity_with_accel_and_fence_limits(guided_vel_target_cms); } // call velocity controller which includes z axis controller pos_control->update_vel_controller_xyz(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from velocity controller, yaw rate from mavlink command or mission item attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.rate_cds()); } else { // roll, pitch from waypoint controller, yaw heading from GCS or auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.yaw(), true); } } // guided_posvel_control_run - runs the guided spline controller // called from guided_run void ModeGuided::posvel_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { make_safe_spool_down(); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set velocity to zero and stop rotating if no updates received for 3 seconds uint32_t tnow = millis(); if (tnow - posvel_update_time_ms > GUIDED_POSVEL_TIMEOUT_MS) { guided_vel_target_cms.zero(); if (auto_yaw.mode() == AUTO_YAW_RATE) { auto_yaw.set_rate(0.0f); } } // calculate dt float dt = pos_control->time_since_last_xy_update(); // sanity check dt if (dt >= 0.2f) { dt = 0.0f; } // advance position target using velocity target guided_pos_target_cm += guided_vel_target_cms * dt; // send position and velocity targets to position controller pos_control->set_pos_target(guided_pos_target_cm); pos_control->set_desired_velocity_xy(guided_vel_target_cms.x, guided_vel_target_cms.y); // run position controllers pos_control->update_xy_controller(); pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from position-velocity controller, yaw rate from mavlink command or mission item attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.rate_cds()); } else { // roll, pitch from waypoint controller, yaw heading from GCS or auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.yaw(), true); } } // guided_angle_control_run - runs the guided angle controller // called from guided_run void ModeGuided::angle_control_run() { // constrain desired lean angles float roll_in = guided_angle_state.roll_cd; float pitch_in = guided_angle_state.pitch_cd; float total_in = norm(roll_in, pitch_in); float angle_max = MIN(attitude_control->get_althold_lean_angle_max(), copter.aparm.angle_max); if (total_in > angle_max) { float ratio = angle_max / total_in; roll_in *= ratio; pitch_in *= ratio; } // wrap yaw request float yaw_in = wrap_180_cd(guided_angle_state.yaw_cd); float yaw_rate_in = guided_angle_state.yaw_rate_cds; float climb_rate_cms = 0.0f; if (!guided_angle_state.use_thrust) { // constrain climb rate climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -fabsf(wp_nav->get_default_speed_down()), wp_nav->get_default_speed_up()); // get avoidance adjusted climb rate climb_rate_cms = get_avoidance_adjusted_climbrate(climb_rate_cms); } // check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds uint32_t tnow = millis(); if (tnow - guided_angle_state.update_time_ms > GUIDED_ATTITUDE_TIMEOUT_MS) { roll_in = 0.0f; pitch_in = 0.0f; climb_rate_cms = 0.0f; yaw_rate_in = 0.0f; guided_angle_state.use_thrust = false; } // interpret positive climb rate or thrust as triggering take-off const bool positive_thrust_or_climbrate = is_positive(guided_angle_state.use_thrust ? guided_angle_state.thrust : climb_rate_cms); if (motors->armed() && positive_thrust_or_climbrate) { copter.set_auto_armed(true); } // if not armed set throttle to zero and exit immediately if (!motors->armed() || !copter.ap.auto_armed || (copter.ap.land_complete && !positive_thrust_or_climbrate)) { make_safe_spool_down(); return; } // TODO: use get_alt_hold_state // landed with positive desired climb rate, takeoff if (copter.ap.land_complete && (guided_angle_state.climb_rate_cms > 0.0f)) { zero_throttle_and_relax_ac(); motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); if (motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) { set_land_complete(false); set_throttle_takeoff(); } return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // call attitude controller if (guided_angle_state.use_yaw_rate) { attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(roll_in, pitch_in, yaw_rate_in); } else { attitude_control->input_euler_angle_roll_pitch_yaw(roll_in, pitch_in, yaw_in, true); } // call position controller if (guided_angle_state.use_thrust) { attitude_control->set_throttle_out(guided_angle_state.thrust, true, copter.g.throttle_filt); } else { pos_control->set_alt_target_from_climb_rate_ff(climb_rate_cms, G_Dt, false); pos_control->update_z_controller(); } } // helper function to update position controller's desired velocity while respecting acceleration limits void ModeGuided::set_desired_velocity_with_accel_and_fence_limits(const Vector3f& vel_des) { // get current desired velocity Vector3f curr_vel_des = pos_control->get_desired_velocity(); // get change in desired velocity Vector3f vel_delta = vel_des - curr_vel_des; // limit xy change float vel_delta_xy = safe_sqrt(sq(vel_delta.x)+sq(vel_delta.y)); float vel_delta_xy_max = G_Dt * pos_control->get_max_accel_xy(); float ratio_xy = 1.0f; if (!is_zero(vel_delta_xy) && (vel_delta_xy > vel_delta_xy_max)) { ratio_xy = vel_delta_xy_max / vel_delta_xy; } curr_vel_des.x += (vel_delta.x * ratio_xy); curr_vel_des.y += (vel_delta.y * ratio_xy); // limit z change float vel_delta_z_max = G_Dt * pos_control->get_max_accel_z(); curr_vel_des.z += constrain_float(vel_delta.z, -vel_delta_z_max, vel_delta_z_max); #if AC_AVOID_ENABLED // limit the velocity for obstacle/fence avoidance copter.avoid.adjust_velocity(curr_vel_des, pos_control->get_pos_xy_p().kP(), pos_control->get_max_accel_xy(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z(), G_Dt); #endif // update position controller with new target pos_control->set_desired_velocity(curr_vel_des); } // helper function to set yaw state and targets void ModeGuided::set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle) { if (use_yaw) { auto_yaw.set_fixed_yaw(yaw_cd * 0.01f, 0.0f, 0, relative_angle); } else if (use_yaw_rate) { auto_yaw.set_rate(yaw_rate_cds); } } // returns true if pilot's yaw input should be used to adjust vehicle's heading bool ModeGuided::use_pilot_yaw(void) const { return (copter.g2.guided_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0; } // Guided Limit code // guided_limit_clear - clear/turn off guided limits void ModeGuided::limit_clear() { guided_limit.timeout_ms = 0; guided_limit.alt_min_cm = 0.0f; guided_limit.alt_max_cm = 0.0f; guided_limit.horiz_max_cm = 0.0f; } // guided_limit_set - set guided timeout and movement limits void ModeGuided::limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm) { guided_limit.timeout_ms = timeout_ms; guided_limit.alt_min_cm = alt_min_cm; guided_limit.alt_max_cm = alt_max_cm; guided_limit.horiz_max_cm = horiz_max_cm; } // guided_limit_init_time_and_pos - initialise guided start time and position as reference for limit checking // only called from AUTO mode's auto_nav_guided_start function void ModeGuided::limit_init_time_and_pos() { // initialise start time guided_limit.start_time = AP_HAL::millis(); // initialise start position from current position guided_limit.start_pos = inertial_nav.get_position(); } // guided_limit_check - returns true if guided mode has breached a limit // used when guided is invoked from the NAV_GUIDED_ENABLE mission command bool ModeGuided::limit_check() { // check if we have passed the timeout if ((guided_limit.timeout_ms > 0) && (millis() - guided_limit.start_time >= guided_limit.timeout_ms)) { return true; } // get current location const Vector3f& curr_pos = inertial_nav.get_position(); // check if we have gone below min alt if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) { return true; } // check if we have gone above max alt if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) { return true; } // check if we have gone beyond horizontal limit if (guided_limit.horiz_max_cm > 0.0f) { float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos, curr_pos); if (horiz_move > guided_limit.horiz_max_cm) { return true; } } // if we got this far we must be within limits return false; } uint32_t ModeGuided::wp_distance() const { switch(mode()) { case Guided_WP: return wp_nav->get_wp_distance_to_destination(); break; case Guided_PosVel: return pos_control->get_distance_to_target(); break; default: return 0; } } int32_t ModeGuided::wp_bearing() const { switch(mode()) { case Guided_WP: return wp_nav->get_wp_bearing_to_destination(); break; case Guided_PosVel: return pos_control->get_bearing_to_target(); break; default: return 0; } } float ModeGuided::crosstrack_error() const { if (mode() == Guided_WP) { return wp_nav->crosstrack_error(); } else { return 0; } } #endif