// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Functions called from the setup menu static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); static int8_t setup_motors (uint8_t argc, const Menu::arg *argv); static int8_t setup_show (uint8_t argc, const Menu::arg *argv); static int8_t setup_accel (uint8_t argc, const Menu::arg *argv); static int8_t setup_accel_flat (uint8_t argc, const Menu::arg *argv); static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); static int8_t setup_pid (uint8_t argc, const Menu::arg *argv); static int8_t setup_frame (uint8_t argc, const Menu::arg *argv); static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass_enable (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass_disable (uint8_t argc, const Menu::arg *argv); // Command/function table for the setup menu const struct Menu::command setup_menu_commands[] PROGMEM = { // command function called // ======= =============== {"reset", setup_factory}, {"erase", setup_erase}, {"radio", setup_radio}, {"motors", setup_motors}, {"level", setup_accel}, {"flat", setup_accel_flat}, {"modes", setup_flightmodes}, {"pid", setup_pid}, {"frame", setup_frame}, {"enable_mag", setup_compass_enable}, {"disable_mag", setup_compass_disable}, {"compass", setup_compass}, {"declination", setup_declination}, {"show", setup_show} }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. int8_t setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance Serial.printf_P(PSTR("Setup Mode\n" "\n" "IMPORTANT: if you have not previously set this system up, use the\n" "'reset' command to initialize the EEPROM to sensible default values\n" "and then the 'radio' command to configure for your radio.\n" "\n")); // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); } // Print the current configuration. // Called by the setup menu 'show' command. static int8_t setup_show(uint8_t argc, const Menu::arg *argv) { uint8_t i; print_blanks(10); Serial.printf_P(PSTR("Radio\n")); print_divider(); // radio read_EEPROM_radio(); print_radio_values(); // frame print_blanks(3); Serial.printf_P(PSTR("Frame\n")); print_divider(); read_EEPROM_frame(); if(frame_type == X_FRAME) Serial.printf_P(PSTR("X ")); else if(frame_type == PLUS_FRAME) Serial.printf_P(PSTR("Plus ")); Serial.printf_P(PSTR("(%d)\n"), (int)frame_type); print_blanks(3); Serial.printf_P(PSTR("Gains\n")); print_divider(); read_EEPROM_PID(); // Acro Serial.printf_P(PSTR("Acro:\nroll:\n")); print_PID(&pid_acro_rate_roll); Serial.printf_P(PSTR("pitch:\n")); print_PID(&pid_acro_rate_pitch); Serial.printf_P(PSTR("yaw:\n")); print_PID(&pid_acro_rate_yaw); // Stabilize Serial.printf_P(PSTR("\nStabilize:\nroll:\n")); print_PID(&pid_stabilize_roll); Serial.printf_P(PSTR("pitch:\n")); print_PID(&pid_stabilize_pitch); Serial.printf_P(PSTR("yaw:\n")); print_PID(&pid_yaw); Serial.printf_P(PSTR("Stabilize dampener: %4.3f\n"), stabilize_dampener); Serial.printf_P(PSTR("Yaw Dampener: %4.3f\n\n"), hold_yaw_dampener); // Nav Serial.printf_P(PSTR("Nav:\npitch:\n")); print_PID(&pid_nav); Serial.printf_P(PSTR("throttle:\n")); print_PID(&pid_throttle); Serial.println(" "); print_blanks(3); Serial.printf_P(PSTR("User Configs\n")); print_divider(); // Crosstrack read_EEPROM_nav(); Serial.printf_P(PSTR("XTRACK: %4.2f\n"), x_track_gain); Serial.printf_P(PSTR("XTRACK angle: %d\n"), x_track_angle); Serial.printf_P(PSTR("PITCH_MAX: %d\n"), pitch_max); // User Configs read_EEPROM_configs(); Serial.printf_P(PSTR("throttle_min: %d\n"), throttle_min); Serial.printf_P(PSTR("throttle_max: %d\n"), throttle_max); Serial.printf_P(PSTR("throttle_cruise: %d\n"), throttle_cruise); Serial.printf_P(PSTR("throttle_failsafe_enabled: %d\n"), throttle_failsafe_enabled); Serial.printf_P(PSTR("throttle_failsafe_value: %d\n"), throttle_failsafe_value); Serial.printf_P(PSTR("log_bitmask: %d\n"), log_bitmask); print_blanks(3); Serial.printf_P(PSTR("IMU\n")); print_divider(); imu.print_gyro_offsets(); imu.print_accel_offsets(); print_blanks(3); Serial.printf_P(PSTR("Compass\n")); print_divider(); if(compass_enabled) Serial.printf_P(PSTR("en")); else Serial.printf_P(PSTR("dis")); Serial.printf_P(PSTR("abled\n\n")); // mag declination read_EEPROM_mag_declination(); Serial.printf_P(PSTR("Mag Delination: ")); Serial.println(mag_declination,2); // mag offsets Serial.printf_P(PSTR("Mag offsets: ")); Serial.print(mag_offset_x, 2); Serial.printf_P(PSTR(", ")); Serial.print(mag_offset_y, 2); Serial.printf_P(PSTR(", ")); Serial.println(mag_offset_z, 2); return(0); } // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. static int8_t setup_factory(uint8_t argc, const Menu::arg *argv) { /* saves: save_EEPROM_waypoint_info(); save_EEPROM_nav(); save_EEPROM_flight_modes(); save_EEPROM_configs(); */ uint8_t i; int c; Serial.printf_P(PSTR("\nType 'Y' and hit Enter to perform factory reset, any other key to abort:\n")); do { c = Serial.read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); //Serial.printf_P(PSTR("\nFACTORY RESET\n\n")); //zero_eeprom(); setup_pid(0 ,NULL); wp_radius = 4; //TODO: Replace this quick fix with a real way to define wp_radius loiter_radius = 30; //TODO: Replace this quick fix with a real way to define loiter_radius save_EEPROM_waypoint_info(); // nav control x_track_gain = XTRACK_GAIN * 100; x_track_angle = XTRACK_ENTRY_ANGLE * 100; pitch_max = PITCH_MAX * 100; save_EEPROM_nav(); // alt hold alt_to_hold = -1; save_EEPROM_alt_RTL(); // default to a + configuration frame_type = PLUS_FRAME; save_EEPROM_frame(); flight_modes[0] = FLIGHT_MODE_1; flight_modes[1] = FLIGHT_MODE_2; flight_modes[2] = FLIGHT_MODE_3; flight_modes[3] = FLIGHT_MODE_4; flight_modes[4] = FLIGHT_MODE_5; flight_modes[5] = FLIGHT_MODE_6; save_EEPROM_flight_modes(); // user configs throttle_min = THROTTLE_MIN; throttle_max = THROTTLE_MAX; throttle_cruise = THROTTLE_CRUISE; throttle_failsafe_enabled = THROTTLE_FAILSAFE; throttle_failsafe_action = THROTTLE_FAILSAFE_ACTION; throttle_failsafe_value = THROTTLE_FS_VALUE; // convenience macro for testing LOG_* and setting LOGBIT_* #define LOGBIT(_s) (LOG_ ## _s ? LOGBIT_ ## _s : 0) log_bitmask = LOGBIT(ATTITUDE_FAST) | LOGBIT(ATTITUDE_MED) | LOGBIT(GPS) | LOGBIT(PM) | LOGBIT(CTUN) | LOGBIT(NTUN) | LOGBIT(MODE) | LOGBIT(RAW) | LOGBIT(CMD); #undef LOGBIT save_EEPROM_configs(); print_done(); // finish // ------ return(0); } // Perform radio setup. // Called by the setup menu 'radio' command. static int8_t setup_radio(uint8_t argc, const Menu::arg *argv) { Serial.println("\n\nRadio Setup:"); uint8_t i; for(i = 0; i < 100;i++){ delay(20); read_radio(); } if(rc_1.radio_in < 500){ while(1){ Serial.printf_P(PSTR("\nNo radio; Check connectors.")); delay(1000); // stop here } } rc_1.radio_min = rc_1.radio_in; rc_2.radio_min = rc_2.radio_in; rc_3.radio_min = rc_3.radio_in; rc_4.radio_min = rc_4.radio_in; rc_5.radio_min = rc_5.radio_in; rc_6.radio_min = rc_6.radio_in; rc_7.radio_min = rc_7.radio_in; rc_8.radio_min = rc_8.radio_in; rc_1.radio_max = rc_1.radio_in; rc_2.radio_max = rc_2.radio_in; rc_3.radio_max = rc_3.radio_in; rc_4.radio_max = rc_4.radio_in; rc_5.radio_max = rc_5.radio_in; rc_6.radio_max = rc_6.radio_in; rc_7.radio_max = rc_7.radio_in; rc_8.radio_max = rc_8.radio_in; rc_1.radio_trim = rc_1.radio_in; rc_2.radio_trim = rc_2.radio_in; rc_4.radio_trim = rc_4.radio_in; // 3 is not trimed rc_5.radio_trim = 1500; rc_6.radio_trim = 1500; rc_7.radio_trim = 1500; rc_8.radio_trim = 1500; Serial.printf_P(PSTR("\nMove all controls to each extreme. Hit Enter to save: ")); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); rc_1.update_min_max(); rc_2.update_min_max(); rc_3.update_min_max(); rc_4.update_min_max(); rc_5.update_min_max(); rc_6.update_min_max(); rc_7.update_min_max(); rc_8.update_min_max(); if(Serial.available() > 0){ //rc_3.radio_max += 250; Serial.flush(); save_EEPROM_radio(); //delay(100); // double checking //read_EEPROM_radio(); //print_radio_values(); print_done(); break; } } return(0); } static int8_t setup_motors(uint8_t argc, const Menu::arg *argv) { init_rc_in(); // read the radio to set trims // --------------------------- trim_radio(); print_hit_enter(); delay(1000); int out_min = rc_3.radio_min + 70; if(frame_type == PLUS_FRAME){ Serial.printf_P(PSTR("PLUS")); }else{ Serial.printf_P(PSTR("X")); } Serial.printf_P(PSTR(" Frame\n")); while(1){ delay(20); read_radio(); motor_out[LEFT] = rc_3.radio_min; motor_out[BACK] = rc_3.radio_min; motor_out[FRONT] = rc_3.radio_min; motor_out[RIGHT] = rc_3.radio_min; if(frame_type == PLUS_FRAME){ if(rc_1.control_in > 0){ motor_out[RIGHT] = out_min; Serial.println("0"); }else if(rc_1.control_in < 0){ motor_out[LEFT] = out_min; Serial.println("1"); } if(rc_2.control_in > 0){ motor_out[BACK] = out_min; Serial.println("3"); }else if(rc_2.control_in < 0){ motor_out[FRONT] = out_min; Serial.println("2"); } }else{ // lower right if((rc_1.control_in > 0) && (rc_2.control_in > 0)){ motor_out[BACK] = out_min; Serial.println("3"); // lower left }else if((rc_1.control_in < 0) && (rc_2.control_in > 0)){ motor_out[LEFT] = out_min; Serial.println("1"); // upper left }else if((rc_1.control_in < 0) && (rc_2.control_in < 0)){ motor_out[FRONT] = out_min; Serial.println("2"); // upper right }else if((rc_1.control_in > 0) && (rc_2.control_in < 0)){ motor_out[RIGHT] = out_min; Serial.println("0"); } } if(rc_3.control_in > 0){ APM_RC.OutputCh(CH_1, rc_3.radio_in); APM_RC.OutputCh(CH_2, rc_3.radio_in); APM_RC.OutputCh(CH_3, rc_3.radio_in); APM_RC.OutputCh(CH_4, rc_3.radio_in); }else{ APM_RC.OutputCh(CH_1, motor_out[RIGHT]); APM_RC.OutputCh(CH_2, motor_out[LEFT]); APM_RC.OutputCh(CH_3, motor_out[FRONT]); APM_RC.OutputCh(CH_4, motor_out[BACK]); } if(Serial.available() > 0){ return (0); } } } static int8_t setup_accel(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nHold ArduCopter completely still and level.\n")); /* imu.init_gyro(); print_gyro(); imu.load_gyro_eeprom(); print_gyro(); */ imu.init_accel(); imu.print_accel_offsets(); //imu.load_accel_eeprom(); //print_accel(); return(0); } static int8_t setup_accel_flat(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nClear Accel offsets.\n")); imu.zero_accel(); imu.print_accel_offsets(); return(0); } static int8_t setup_pid(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nSetting default PID gains\n")); // acro, angular rate pid_acro_rate_roll.kP(ACRO_RATE_ROLL_P); pid_acro_rate_roll.kI(ACRO_RATE_ROLL_I); pid_acro_rate_roll.kD(ACRO_RATE_ROLL_D); pid_acro_rate_roll.imax(ACRO_RATE_ROLL_IMAX * 100); pid_acro_rate_pitch.kP(ACRO_RATE_PITCH_P); pid_acro_rate_pitch.kI(ACRO_RATE_PITCH_I); pid_acro_rate_pitch.kD(ACRO_RATE_PITCH_D); pid_acro_rate_pitch.imax(ACRO_RATE_PITCH_IMAX * 100); pid_acro_rate_yaw.kP(ACRO_RATE_YAW_P); pid_acro_rate_yaw.kI(ACRO_RATE_YAW_I); pid_acro_rate_yaw.kD(ACRO_RATE_YAW_D); pid_acro_rate_yaw.imax(ACRO_RATE_YAW_IMAX * 100); // stabilize, angle error pid_stabilize_roll.kP(STABILIZE_ROLL_P); pid_stabilize_roll.kI(STABILIZE_ROLL_I); pid_stabilize_roll.kD(STABILIZE_ROLL_D); pid_stabilize_roll.imax(STABILIZE_ROLL_IMAX * 100); pid_stabilize_pitch.kP(STABILIZE_PITCH_P); pid_stabilize_pitch.kI(STABILIZE_PITCH_I); pid_stabilize_pitch.kD(STABILIZE_PITCH_D); pid_stabilize_pitch.imax(STABILIZE_PITCH_IMAX * 100); // YAW hold pid_yaw.kP(YAW_P); pid_yaw.kI(YAW_I); pid_yaw.kD(YAW_D); pid_yaw.imax(YAW_IMAX * 100); // custom dampeners // roll pitch stabilize_dampener = STABILIZE_DAMPENER; //yaw hold_yaw_dampener = HOLD_YAW_DAMPENER; // navigation pid_nav.kP(NAV_P); pid_nav.kI(NAV_I); pid_nav.kD(NAV_D); pid_nav.imax(NAV_IMAX * 100); pid_throttle.kP(THROTTLE_P); pid_throttle.kI(THROTTLE_I); pid_throttle.kD(THROTTLE_D); pid_throttle.imax(THROTTLE_IMAX * 100); save_EEPROM_PID(); print_done(); } static int8_t setup_flightmodes(uint8_t argc, const Menu::arg *argv) { byte switchPosition, oldSwitchPosition, mode; Serial.printf_P(PSTR("\nMove RC toggle switch to each position to edit, move aileron stick to select modes.")); print_hit_enter(); trim_radio(); while(1){ delay(20); read_radio(); switchPosition = readSwitch(); // look for control switch change if (oldSwitchPosition != switchPosition){ mode = flight_modes[switchPosition]; mode = constrain(mode, 0, NUM_MODES-1); // update the user print_switch(switchPosition, mode); // Remember switch position oldSwitchPosition = switchPosition; } // look for stick input if (radio_input_switch() == true){ mode++; if(mode >= NUM_MODES) mode = 0; // save new mode flight_modes[switchPosition] = mode; // print new mode print_switch(switchPosition, mode); } // escape hatch if(Serial.available() > 0){ save_EEPROM_flight_modes(); print_done(); return (0); } } } static int8_t setup_declination(uint8_t argc, const Menu::arg *argv) { mag_declination = argv[1].f; save_EEPROM_mag_declination(); read_EEPROM_mag_declination(); Serial.printf_P(PSTR("\nsaved: ")); Serial.println(argv[1].f, 2); } static int8_t setup_erase(uint8_t argc, const Menu::arg *argv) { zero_eeprom(); return 0; } static int8_t setup_compass_enable(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nCompass enabled:\n")); compass_enabled = true; save_EEPROM_mag(); init_compass(); return 0; } static int8_t setup_compass_disable(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nCompass disabled:\n")); compass_enabled = false; save_EEPROM_mag(); return 0; } static int8_t setup_frame(uint8_t argc, const Menu::arg *argv) { if(argv[1].i < 1){ Serial.printf_P(PSTR("\nUsage:\nPlus frame =>frame 1\nX frame =>frame 2\nTRI frame =>frame 3\n\n")); return 0; } Serial.printf_P(PSTR("\nSaving ")); if(argv[1].i == 1){ Serial.printf_P(PSTR("Plus ")); frame_type = PLUS_FRAME; }else if(argv[1].i == 2){ Serial.printf_P(PSTR("X ")); frame_type = X_FRAME; }else if(argv[1].i == 3){ Serial.printf_P(PSTR("Tri ")); frame_type = X_FRAME; } Serial.printf_P(PSTR("frame\n\n")); save_EEPROM_frame(); return 0; } static int8_t setup_compass(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nRotate/Pitch/Roll your ArduCopter until the offset variables stop changing.\n")); print_hit_enter(); Serial.printf_P(PSTR("Starting in 3 secs.\n")); delay(3000); compass.init(); // Initialization compass.set_orientation(MAGORIENTATION); // set compass's orientation on aircraft compass.set_offsets(0, 0, 0); // set offsets to account for surrounding interference compass.set_declination(ToRad(DECLINATION)); // set local difference between magnetic north and true north //int counter = 0; float _min[3], _max[3], _offset[3]; while(1){ static float min[3], _max[3], offset[3]; if (millis() - fast_loopTimer > 100) { deltaMiliSeconds = millis() - fast_loopTimer; fast_loopTimer = millis(); G_Dt = (float)deltaMiliSeconds / 1000.f; compass.read(); compass.calculate(0, 0); // roll = 0, pitch = 0 for this example // capture min if(compass.mag_x < _min[0]) _min[0] = compass.mag_x; if(compass.mag_y < _min[1]) _min[1] = compass.mag_y; if(compass.mag_z < _min[2]) _min[2] = compass.mag_z; // capture max if(compass.mag_x > _max[0]) _max[0] = compass.mag_x; if(compass.mag_y > _max[1]) _max[1] = compass.mag_y; if(compass.mag_z > _max[2]) _max[2] = compass.mag_z; // calculate offsets offset[0] = -(_max[0] + _min[0]) / 2; offset[1] = -(_max[1] + _min[1]) / 2; offset[2] = -(_max[2] + _min[2]) / 2; // display all to user Serial.printf_P(PSTR("Heading: ")); Serial.print(ToDeg(compass.heading)); Serial.print(" \t("); Serial.print(compass.mag_x); Serial.print(","); Serial.print(compass.mag_y); Serial.print(","); Serial.print(compass.mag_z); Serial.print(")\t offsets("); Serial.print(offset[0]); Serial.print(","); Serial.print(offset[1]); Serial.print(","); Serial.print(offset[2]); Serial.println(")"); if(Serial.available() > 0){ mag_offset_x = offset[0]; mag_offset_y = offset[1]; mag_offset_z = offset[2]; save_EEPROM_mag_offset(); // set offsets to account for surrounding interference compass.set_offsets(mag_offset_x, mag_offset_y, mag_offset_z); print_done(); break; } } } } /***************************************************************************/ // CLI utilities /***************************************************************************/ void print_PID(PID * pid) { Serial.printf_P(PSTR("P: %4.3f, I:%4.3f, D:%4.3f, IMAX:%d\n"), pid->kP(), pid->kI(), pid->kD(), (int)(pid->imax()/100)); } void print_radio_values() { Serial.printf_P(PSTR("CH1: %d | %d\n"), rc_1.radio_min, rc_1.radio_max); Serial.printf_P(PSTR("CH2: %d | %d\n"), rc_2.radio_min, rc_2.radio_max); Serial.printf_P(PSTR("CH3: %d | %d\n"), rc_3.radio_min, rc_3.radio_max); Serial.printf_P(PSTR("CH4: %d | %d\n"), rc_4.radio_min, rc_4.radio_max); Serial.printf_P(PSTR("CH5: %d | %d\n"), rc_5.radio_min, rc_5.radio_max); Serial.printf_P(PSTR("CH6: %d | %d\n"), rc_6.radio_min, rc_6.radio_max); Serial.printf_P(PSTR("CH7: %d | %d\n"), rc_7.radio_min, rc_7.radio_max); Serial.printf_P(PSTR("CH8: %d | %d\n"), rc_8.radio_min, rc_8.radio_max); } void print_switch(byte p, byte m) { Serial.printf_P(PSTR("Pos %d: "),p); Serial.println(flight_mode_strings[m]); } void print_done() { Serial.printf_P(PSTR("\nSaved Settings\n\n")); } void print_blanks(int num) { while(num > 0){ num--; Serial.println(""); } } void print_divider(void) { for (int i = 0; i < 40; i++) { Serial.print("-"); } Serial.println(""); } // for reading in vales for mode switch boolean radio_input_switch(void) { static byte bouncer; if (abs(rc_1.radio_in - rc_1.radio_trim) > 200) bouncer = 10; if (bouncer > 0) bouncer--; if (bouncer == 1){ return true; }else{ return false; } } void zero_eeprom(void) { byte b; Serial.printf_P(PSTR("\nErasing EEPROM\n")); for (int i = 0; i < EEPROM_MAX_ADDR; i++) { eeprom_write_byte((uint8_t *) i, b); } Serial.printf_P(PSTR("done\n")); }