// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Copyright 2010 Michael Smith, all rights reserved. // This library is free software; you can redistribute it and / or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // Derived closely from: /**************************************** * 3D Vector Classes * By Bill Perone (billperone@yahoo.com) * Original: 9-16-2002 * Revised: 19-11-2003 * 11-12-2003 * 18-12-2003 * 06-06-2004 * * © 2003, This code is provided "as is" and you can use it freely as long as * credit is given to Bill Perone in the application it is used in * * Notes: * if a*b = 0 then a & b are orthogonal * a%b = -b%a * a*(b%c) = (a%b)*c * a%b = a(cast to matrix)*b * (a%b).length() = area of parallelogram formed by a & b * (a%b).length() = a.length()*b.length() * sin(angle between a & b) * (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0 * a * (b%c) = volume of parallelpiped formed by a, b, c * vector triple product: a%(b%c) = b*(a*c) - c*(a*b) * scalar triple product: a*(b%c) = c*(a%b) = b*(c%a) * vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c) * if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0 * vectors a1...an are linearly dependant if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0 * or if the matrix (A) * b = 0 * ****************************************/ #ifndef VECTOR3_H #define VECTOR3_H #include <math.h> #include <string.h> template <typename T> class Vector3 { public: T x, y, z; // trivial ctor Vector3<T>() { x = y = z = 0; } // setting ctor Vector3<T>(const T x0, const T y0, const T z0): x(x0), y(y0), z(z0) {} // function call operator void operator ()(const T x0, const T y0, const T z0) { x= x0; y= y0; z= z0; } // test for equality bool operator==(const Vector3<T> &v) { return (x==v.x && y==v.y && z==v.z); } // test for inequality bool operator!=(const Vector3<T> &v) { return (x!=v.x || y!=v.y || z!=v.z); } // negation Vector3<T> operator -(void) const { return Vector3<T>(-x,-y,-z); } // addition Vector3<T> operator +(const Vector3<T> &v) const { return Vector3<T>(x+v.x, y+v.y, z+v.z); } // subtraction Vector3<T> operator -(const Vector3<T> &v) const { return Vector3<T>(x-v.x, y-v.y, z-v.z); } // uniform scaling Vector3<T> operator *(const T num) const { Vector3<T> temp(*this); return temp*=num; } // uniform scaling Vector3<T> operator /(const T num) const { Vector3<T> temp(*this); return temp/=num; } // addition Vector3<T> &operator +=(const Vector3<T> &v) { x+=v.x; y+=v.y; z+=v.z; return *this; } // subtraction Vector3<T> &operator -=(const Vector3<T> &v) { x-=v.x; y-=v.y; z-=v.z; return *this; } // uniform scaling Vector3<T> &operator *=(const T num) { x*=num; y*=num; z*=num; return *this; } // uniform scaling Vector3<T> &operator /=(const T num) { x/=num; y/=num; z/=num; return *this; } // dot product T operator *(const Vector3<T> &v) const { return x*v.x + y*v.y + z*v.z; } // cross product Vector3<T> operator %(const Vector3<T> &v) const { Vector3<T> temp(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x); return temp; } // gets the length of this vector squared T length_squared() const { return (T)(*this * *this); } // gets the length of this vector float length() const { return (T)sqrt(*this * *this); } // normalizes this vector void normalize() { *this/=length(); } // zero the vector void zero() { x = y = z = 0.0; } // returns the normalized version of this vector Vector3<T> normalized() const { return *this/length(); } // reflects this vector about n void reflect(const Vector3<T> &n) { Vector3<T> orig(*this); project(n); *this= *this*2 - orig; } // projects this vector onto v void project(const Vector3<T> &v) { *this= v * (*this * v)/(v*v); } // returns this vector projected onto v Vector3<T> projected(const Vector3<T> &v) { return v * (*this * v)/(v*v); } // computes the angle between 2 arbitrary vectors T angle(const Vector3<T> &v1, const Vector3<T> &v2) { return (T)acosf((v1*v2) / (v1.length()*v2.length())); } // computes the angle between 2 arbitrary normalized vectors T angle_normalized(const Vector3<T> &v1, const Vector3<T> &v2) { return (T)acosf(v1*v2); } // check if any elements are NAN bool is_nan(void) { return isnan(x) || isnan(y) || isnan(z); } // check if any elements are infinity bool is_inf(void) { return isinf(x) || isinf(y) || isinf(z); } // rotate by a standard rotation void rotate(enum Rotation rotation); }; typedef Vector3<int16_t> Vector3i; typedef Vector3<uint16_t> Vector3ui; typedef Vector3<int32_t> Vector3l; typedef Vector3<uint32_t> Vector3ul; typedef Vector3<float> Vector3f; #endif // VECTOR3_H