/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ /* with thanks to PX4 dsm.c for DSM decoding approach */ #include "AP_RCProtocol_config.h" #if AP_RCPROTOCOL_DSM_ENABLED #include "AP_RCProtocol_DSM.h" #include extern const AP_HAL::HAL& hal; // #define DSM_DEBUG #ifdef DSM_DEBUG #include # define debug(fmt, args...) printf(fmt "\n", ##args) #else # define debug(fmt, args...) do {} while(0) #endif #define DSM_FRAME_SIZE 16 /**> shift) & 0xf; uint16_t data_mask = (1 << shift) - 1; *value = raw & data_mask; //debug("DSM: %d 0x%04x -> %d %d", shift, raw, *channel, *value); return true; } /** * Attempt to guess if receiving 10 or 11 bit channel values * * @param[in] reset true=reset the 10/11 bit state to unknown */ void AP_RCProtocol_DSM::dsm_guess_format(bool reset, const uint8_t dsm_frame[16], unsigned frame_channels) { /* reset the 10/11 bit sniffed channel masks */ if (reset) { cs10 = 0; cs11 = 0; samples = 0; channel_shift = 0; return; } /* scan the channels in the current dsm_frame in both 10- and 11-bit mode */ for (unsigned i = 0; i < frame_channels; i++) { const uint8_t *dp = &dsm_frame[2 + (2 * i)]; uint16_t raw = (dp[0] << 8) | dp[1]; unsigned channel, value; /* if the channel decodes, remember the assigned number */ if (dsm_decode_channel(raw, 10, &channel, &value) && (channel < 16)) { cs10 |= (1 << channel); } if (dsm_decode_channel(raw, 11, &channel, &value) && (channel < 16)) { cs11 |= (1 << channel); } /* XXX if we cared, we could look for the phase bit here to decide 1 vs. 2-dsm_frame format */ } /* wait until we have seen plenty of frames - 5 should normally be enough */ if (samples++ < 5) { return; } /* * Iterate the set of sensible sniffed channel sets and see whether * decoding in 10 or 11-bit mode has yielded anything we recognize. * * XXX Note that due to what seem to be bugs in the DSM2 high-resolution * stream, we may want to sniff for longer in some cases when we think we * are talking to a DSM2 receiver in high-resolution mode (so that we can * reject it, ideally). * See e.g. http://git.openpilot.org/cru/OPReview-116 for a discussion * of this issue. */ static const uint32_t masks[] = { 0x1f, /* 5 channels (DX6 VTX frame) */ 0x3f, /* 6 channels (DX6) */ 0x7f, /* 7 channels (DX7) */ 0xff, /* 8 channels (DX8) */ 0x1ff, /* 9 channels (DX9, etc.) */ 0x3ff, /* 10 channels (DX10) */ 0x7ff, /* 11 channels */ 0xfff, /* 12 channels */ 0x1fff, /* 13 channels */ 0x3fff, /* 14 channels */ 0x7fff, /* 15 channels */ 0xffff /* 16 channels */ // the remote receiver protocol supports max 16 channels }; unsigned votes10 = 0; unsigned votes11 = 0; for (unsigned i = 0; i < sizeof(masks)/sizeof(masks[0]); i++) { if (cs10 == masks[i]) { votes10++; } if (cs11 == masks[i]) { votes11++; } } if ((votes11 == 1) && (votes10 == 0)) { channel_shift = 11; debug("DSM: 11-bit format"); return; } if ((votes10 == 1) && (votes11 == 0)) { channel_shift = 10; debug("DSM: 10-bit format"); return; } /* call ourselves to reset our state ... we have to try again */ debug("DSM: format detect fail, 10: 0x%08x %u 11: 0x%08x %u", cs10, votes10, cs11, votes11); dsm_guess_format(true, dsm_frame, frame_channels); } /** * Decode the entire dsm frame (all contained channels) * */ bool AP_RCProtocol_DSM::dsm_decode(uint32_t frame_time_ms, const uint8_t dsm_frame[16], uint16_t *values, uint16_t *num_values, uint16_t max_values) { /* * If we have lost signal for at least 200ms, reset the * format guessing heuristic. */ if (((frame_time_ms - last_frame_time_ms) > 200U) && (channel_shift != 0)) { dsm_guess_format(true, dsm_frame, DSM_FRAME_CHANNELS); } /* we have received something we think is a dsm_frame */ last_frame_time_ms = frame_time_ms; // Get the VTX control bytes in a frame uint32_t vtxControl = ((dsm_frame[DSM_FRAME_SIZE-4] << 24) | (dsm_frame[DSM_FRAME_SIZE-3] << 16) | (dsm_frame[DSM_FRAME_SIZE-2] << 8) | (dsm_frame[DSM_FRAME_SIZE-1] << 0)); const bool haveVtxControl = ((vtxControl & SPEKTRUM_VTX_CONTROL_FRAME_MASK) == SPEKTRUM_VTX_CONTROL_FRAME && (dsm_frame[2] & 0x80) == 0); unsigned frame_channels = DSM_FRAME_CHANNELS; // Handle VTX control frame. if (haveVtxControl) { frame_channels = DSM_FRAME_CHANNELS - 2; } /* if we don't know the dsm_frame format, update the guessing state machine */ if (channel_shift == 0) { dsm_guess_format(false, dsm_frame, frame_channels); return false; } // Handle VTX control frame. #if AP_VIDEOTX_ENABLED if (haveVtxControl) { configure_vtx( (vtxControl & SPEKTRUM_VTX_BAND_MASK) >> SPEKTRUM_VTX_BAND_SHIFT, (vtxControl & SPEKTRUM_VTX_CHANNEL_MASK) >> SPEKTRUM_VTX_CHANNEL_SHIFT, (vtxControl & SPEKTRUM_VTX_POWER_MASK) >> SPEKTRUM_VTX_POWER_SHIFT, (vtxControl & SPEKTRUM_VTX_PIT_MODE_MASK) >> SPEKTRUM_VTX_PIT_MODE_SHIFT); } #endif /* * The encoding of the first two bytes is uncertain, so we're * going to ignore them for now. * * Each channel is a 16-bit unsigned value containing either a 10- * or 11-bit channel value and a 4-bit channel number, shifted * either 10 or 11 bits. The MSB may also be set to indicate the * second dsm_frame in variants of the protocol where more than * seven channels are being transmitted. */ for (unsigned i = 0; i < frame_channels; i++) { const uint8_t *dp = &dsm_frame[2 + (2 * i)]; uint16_t raw = (dp[0] << 8) | dp[1]; unsigned channel, value; if (!dsm_decode_channel(raw, channel_shift, &channel, &value)) { continue; } /* ignore channels out of range */ if (channel >= max_values) { continue; } /* update the decoded channel count */ if (channel >= *num_values) { *num_values = channel + 1; } /* convert 0-1024 / 0-2048 values to 1000-2000 ppm encoding. */ if (channel_shift == 10) { value *= 2; } /* * Spektrum scaling is special. There are these basic considerations * * * Midpoint is 1520 us * * 100% travel channels are +- 400 us * * We obey the original Spektrum scaling (so a default setup will scale from * 1100 - 1900 us), but we do not obey the weird 1520 us center point * and instead (correctly) center the center around 1500 us. This is in order * to get something useful without requiring the user to calibrate on a digital * link for no reason. */ /* scaled integer for decent accuracy while staying efficient */ value = ((((int)value - 1024) * 1000) / 1700) + 1500; /* * Store the decoded channel into the R/C input buffer, taking into * account the different ideas about channel assignement that we have. * * Specifically, the first four channels in rc_channel_data are roll, pitch, thrust, yaw, * but the first four channels from the DSM receiver are thrust, roll, pitch, yaw. */ switch (channel) { case 0: channel = 2; break; case 1: channel = 0; break; case 2: channel = 1; break; default: break; } values[channel] = value; } /* * Spektrum likes to send junk in higher channel numbers to fill * their packets. We don't know about a 13 channel model in their TX * lines, so if we get a channel count of 13, we'll return 12 (the last * data index that is stable). */ if (*num_values == 13) { *num_values = 12; } #if 0 if (channel_shift == 11) { /* Set the 11-bit data indicator */ *num_values |= 0x8000; } #endif /* * XXX Note that we may be in failsafe here; we need to work out how to detect that. */ return true; } /* start bind on DSM satellites */ void AP_RCProtocol_DSM::start_bind(void) { #if defined(HAL_GPIO_SPEKTRUM_RC) && HAL_GPIO_SPEKTRUM_RC if (!hal.gpio->get_mode(HAL_GPIO_SPEKTRUM_RC, bind_mode_saved)) { return; } #endif bind_state = BIND_STATE1; } /* update function used for bind state machine */ void AP_RCProtocol_DSM::update(void) { #if defined(HAL_GPIO_SPEKTRUM_PWR) && defined(HAL_GPIO_SPEKTRUM_RC) switch (bind_state) { case BIND_STATE_NONE: break; case BIND_STATE1: hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, !HAL_SPEKTRUM_PWR_ENABLED); hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 1); hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1); bind_last_ms = AP_HAL::millis(); bind_state = BIND_STATE2; break; case BIND_STATE2: { uint32_t now = AP_HAL::millis(); if (now - bind_last_ms > 500) { hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, HAL_SPEKTRUM_PWR_ENABLED); bind_last_ms = now; bind_state = BIND_STATE3; } break; } case BIND_STATE3: { uint32_t now = AP_HAL::millis(); if (now - bind_last_ms > 72) { // 9 pulses works with all satellite receivers, and supports the highest // available protocol const uint8_t num_pulses = 9; for (uint8_t i=0; idelay_microseconds(120); hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 0); hal.scheduler->delay_microseconds(120); hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1); } bind_last_ms = now; bind_state = BIND_STATE4; } break; } case BIND_STATE4: { uint32_t now = AP_HAL::millis(); if (now - bind_last_ms > 50) { hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 0); bind_state = BIND_STATE_NONE; hal.gpio->set_mode(HAL_GPIO_SPEKTRUM_RC, bind_mode_saved); } break; } } #endif } /* parse one DSM byte, maintaining decoder state */ bool AP_RCProtocol_DSM::dsm_parse_byte(uint32_t frame_time_ms, uint8_t b, uint16_t *values, uint16_t *num_values, uint16_t max_channels) { /* this is set by the decoding state machine and will default to false * once everything that was decodable has been decoded. */ bool decode_ret = false; /* overflow check */ if (byte_input.ofs == sizeof(byte_input.buf) / sizeof(byte_input.buf[0])) { byte_input.ofs = 0; dsm_decode_state = DSM_DECODE_STATE_DESYNC; debug("DSM: RESET (BUF LIM)\n"); reset_rc_frame_count(); } if (byte_input.ofs == DSM_FRAME_SIZE) { byte_input.ofs = 0; dsm_decode_state = DSM_DECODE_STATE_DESYNC; debug("DSM: RESET (PACKET LIM)\n"); reset_rc_frame_count(); } #ifdef DSM_DEBUG debug("dsm state: %s%s, count: %d, val: %02x\n", (dsm_decode_state == DSM_DECODE_STATE_DESYNC) ? "DSM_DECODE_STATE_DESYNC" : "", (dsm_decode_state == DSM_DECODE_STATE_SYNC) ? "DSM_DECODE_STATE_SYNC" : "", byte_input.ofs, (unsigned)b); #endif switch (dsm_decode_state) { case DSM_DECODE_STATE_DESYNC: /* we are de-synced and only interested in the frame marker */ if ((frame_time_ms - last_rx_time_ms) >= 5) { dsm_decode_state = DSM_DECODE_STATE_SYNC; byte_input.ofs = 0; byte_input.buf[byte_input.ofs++] = b; } break; case DSM_DECODE_STATE_SYNC: { if ((frame_time_ms - last_rx_time_ms) >= 5 && byte_input.ofs > 0) { byte_input.ofs = 0; dsm_decode_state = DSM_DECODE_STATE_DESYNC; break; } byte_input.buf[byte_input.ofs++] = b; /* decode whatever we got and expect */ if (byte_input.ofs < DSM_FRAME_SIZE) { break; } /* * Great, it looks like we might have a frame. Go ahead and * decode it. */ log_data(AP_RCProtocol::DSM, frame_time_ms * 1000, byte_input.buf, byte_input.ofs); decode_ret = dsm_decode(frame_time_ms, byte_input.buf, values, &chan_count, max_channels); /* we consumed the partial frame, reset */ byte_input.ofs = 0; /* if decoding failed, set proto to desync */ if (decode_ret == false) { dsm_decode_state = DSM_DECODE_STATE_DESYNC; reset_rc_frame_count(); } break; } default: debug("UNKNOWN PROTO STATE"); decode_ret = false; } if (decode_ret) { *num_values = chan_count; } last_rx_time_ms = frame_time_ms; /* return false as default */ return decode_ret; } // support byte input void AP_RCProtocol_DSM::_process_byte(uint32_t timestamp_ms, uint8_t b) { uint16_t v[AP_DSM_MAX_CHANNELS]; uint16_t nchan; memcpy(v, last_values, sizeof(v)); if (dsm_parse_byte(timestamp_ms, b, v, &nchan, AP_DSM_MAX_CHANNELS)) { memcpy(last_values, v, sizeof(v)); if (nchan >= MIN_RCIN_CHANNELS) { add_input(nchan, last_values, false); } } } // support byte input void AP_RCProtocol_DSM::process_byte(uint8_t b, uint32_t baudrate) { if (baudrate != 115200) { return; } _process_byte(AP_HAL::millis(), b); } #endif // AP_RCPROTOCOL_DSM_ENABLED