/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Proximity_config.h" #if AP_PROXIMITY_SITL_ENABLED #include "AP_Proximity_SITL.h" #include #include #include #include extern const AP_HAL::HAL& hal; #define PROXIMITY_MAX_RANGE 200.0f #define PROXIMITY_ACCURACY 0.1f /* The constructor also initialises the proximity sensor. */ AP_Proximity_SITL::AP_Proximity_SITL(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state, AP_Proximity_Params& _params): AP_Proximity_Backend(_frontend, _state, _params), sitl(AP::sitl()) { ap_var_type ptype; fence_alt_max = (AP_Float *)AP_Param::find("FENCE_ALT_MAX", &ptype); if (fence_alt_max == nullptr || ptype != AP_PARAM_FLOAT) { AP_HAL::panic("Proximity_SITL: Failed to find FENCE_ALT_MAX"); } } // update the state of the sensor void AP_Proximity_SITL::update(void) { current_loc.lat = sitl->state.latitude * 1.0e7; current_loc.lng = sitl->state.longitude * 1.0e7; current_loc.alt = sitl->state.altitude * 1.0e2; #if AP_FENCE_ENABLED if (!AP::fence()->polyfence().breached()) { // only called to prompt polyfence to reload fence if required } if (AP::fence()->polyfence().inclusion_boundary_available()) { set_status(AP_Proximity::Status::Good); // update distance in each sector for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { const float yaw_angle_deg = sector * 45.0f; AP_Proximity_Boundary_3D::Face face = frontend.boundary.get_face(yaw_angle_deg); float fence_distance; if (get_distance_to_fence(yaw_angle_deg, fence_distance)) { frontend.boundary.set_face_attributes(face, yaw_angle_deg, fence_distance, state.instance); // update OA database database_push(yaw_angle_deg, fence_distance); } else { frontend.boundary.reset_face(face, state.instance); } } } else { set_status(AP_Proximity::Status::NoData); } #else set_status(AP_Proximity::Status::NoData); #endif } // get distance in meters to fence in a particular direction in degrees (0 is forward, angles increase in the clockwise direction) bool AP_Proximity_SITL::get_distance_to_fence(float angle_deg, float &distance) const { #if AP_FENCE_ENABLED if (!AP::fence()->polyfence().inclusion_boundary_available()) { return false; } // convert to earth frame angle_deg = wrap_360(sitl->state.yawDeg + angle_deg); /* simple bisection search to find distance. Not really efficient, but we can afford the CPU in SITL */ float min_dist = 0, max_dist = PROXIMITY_MAX_RANGE; while (max_dist - min_dist > PROXIMITY_ACCURACY) { float test_dist = (max_dist+min_dist)*0.5f; Location loc = current_loc; loc.offset_bearing(angle_deg, test_dist); if (AP::fence()->polyfence().breached(loc)) { max_dist = test_dist; } else { min_dist = test_dist; } } distance = min_dist; if (ignore_reading(angle_deg, distance, false)) { // obstacle near land, lets ignore it return false; } return true; #else return false; #endif } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity_SITL::distance_max() const { return PROXIMITY_MAX_RANGE; } float AP_Proximity_SITL::distance_min() const { return 0.0f; } // get distance upwards in meters. returns true on success bool AP_Proximity_SITL::get_upward_distance(float &distance) const { // return distance to fence altitude distance = MAX(0.0f, fence_alt_max->get() - sitl->state.height_agl); return true; } #endif // AP_PROXIMITY_SITL_ENABLED