#pragma once #include #include #include // filter library #include #include #include // offsets for motors in motor_out and _motor_filtered arrays #define AP_MOTORS_MOT_1 0U #define AP_MOTORS_MOT_2 1U #define AP_MOTORS_MOT_3 2U #define AP_MOTORS_MOT_4 3U #define AP_MOTORS_MOT_5 4U #define AP_MOTORS_MOT_6 5U #define AP_MOTORS_MOT_7 6U #define AP_MOTORS_MOT_8 7U #define AP_MOTORS_MOT_9 8U #define AP_MOTORS_MOT_10 9U #define AP_MOTORS_MOT_11 10U #define AP_MOTORS_MOT_12 11U #define AP_MOTORS_MAX_NUM_MOTORS 12 #ifndef AP_MOTORS_FRAME_DEFAULT_ENABLED #define AP_MOTORS_FRAME_DEFAULT_ENABLED 1 #endif #ifndef AP_MOTORS_FRAME_QUAD_ENABLED #define AP_MOTORS_FRAME_QUAD_ENABLED AP_MOTORS_FRAME_DEFAULT_ENABLED #endif #ifndef AP_MOTORS_FRAME_HEXA_ENABLED #define AP_MOTORS_FRAME_HEXA_ENABLED AP_MOTORS_FRAME_DEFAULT_ENABLED #endif #ifndef AP_MOTORS_FRAME_OCTA_ENABLED #define AP_MOTORS_FRAME_OCTA_ENABLED AP_MOTORS_FRAME_DEFAULT_ENABLED #endif #ifndef AP_MOTORS_FRAME_DECA_ENABLED #define AP_MOTORS_FRAME_DECA_ENABLED AP_MOTORS_FRAME_DEFAULT_ENABLED #endif #ifndef AP_MOTORS_FRAME_DODECAHEXA_ENABLED #define AP_MOTORS_FRAME_DODECAHEXA_ENABLED AP_MOTORS_FRAME_DEFAULT_ENABLED #endif #ifndef AP_MOTORS_FRAME_Y6_ENABLED #define AP_MOTORS_FRAME_Y6_ENABLED AP_MOTORS_FRAME_DEFAULT_ENABLED #endif #ifndef AP_MOTORS_FRAME_OCTAQUAD_ENABLED #define AP_MOTORS_FRAME_OCTAQUAD_ENABLED AP_MOTORS_FRAME_DEFAULT_ENABLED #endif // motor update rate #define AP_MOTORS_SPEED_DEFAULT 490 // default output rate to the motors /// @class AP_Motors class AP_Motors { public: enum motor_frame_class { MOTOR_FRAME_UNDEFINED = 0, MOTOR_FRAME_QUAD = 1, MOTOR_FRAME_HEXA = 2, MOTOR_FRAME_OCTA = 3, MOTOR_FRAME_OCTAQUAD = 4, MOTOR_FRAME_Y6 = 5, MOTOR_FRAME_HELI = 6, MOTOR_FRAME_TRI = 7, MOTOR_FRAME_SINGLE = 8, MOTOR_FRAME_COAX = 9, MOTOR_FRAME_TAILSITTER = 10, MOTOR_FRAME_HELI_DUAL = 11, MOTOR_FRAME_DODECAHEXA = 12, MOTOR_FRAME_HELI_QUAD = 13, MOTOR_FRAME_DECA = 14, MOTOR_FRAME_SCRIPTING_MATRIX = 15, MOTOR_FRAME_6DOF_SCRIPTING = 16, MOTOR_FRAME_DYNAMIC_SCRIPTING_MATRIX = 17, }; // return string corresponding to frame_class const char* get_frame_string() const; enum motor_frame_type { MOTOR_FRAME_TYPE_PLUS = 0, MOTOR_FRAME_TYPE_X = 1, MOTOR_FRAME_TYPE_V = 2, MOTOR_FRAME_TYPE_H = 3, MOTOR_FRAME_TYPE_VTAIL = 4, MOTOR_FRAME_TYPE_ATAIL = 5, MOTOR_FRAME_TYPE_PLUSREV = 6, // plus with reversed motor direction MOTOR_FRAME_TYPE_Y6B = 10, MOTOR_FRAME_TYPE_Y6F = 11, // for FireFlyY6 MOTOR_FRAME_TYPE_BF_X = 12, // X frame, betaflight ordering MOTOR_FRAME_TYPE_DJI_X = 13, // X frame, DJI ordering MOTOR_FRAME_TYPE_CW_X = 14, // X frame, clockwise ordering MOTOR_FRAME_TYPE_I = 15, // (sideways H) octo only MOTOR_FRAME_TYPE_NYT_PLUS = 16, // plus frame, no differential torque for yaw MOTOR_FRAME_TYPE_NYT_X = 17, // X frame, no differential torque for yaw MOTOR_FRAME_TYPE_BF_X_REV = 18, // X frame, betaflight ordering, reversed motors MOTOR_FRAME_TYPE_Y4 = 19, //Y4 Quadrotor frame }; // returns a formatted string into buffer, e.g. "QUAD/X" void get_frame_and_type_string(char *buffer, uint8_t buflen) const; // Constructor AP_Motors(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT); // singleton support static AP_Motors *get_singleton(void) { return _singleton; } // check initialisation succeeded virtual bool arming_checks(size_t buflen, char *buffer) const; virtual bool motor_test_checks(size_t buflen, char *buffer) const; bool initialised_ok() const { return _initialised_ok; } void set_initialised_ok(bool val) { _initialised_ok = val; } // arm, disarm or check status status of motors bool armed() const { return _armed; } void armed(bool arm); // set motor interlock status void set_interlock(bool set) { _interlock = set;} // get motor interlock status. true means motors run, false motors don't run bool get_interlock() const { return _interlock; } // get/set spoolup block bool get_spoolup_block() const { return _spoolup_block; } void set_spoolup_block(bool set) { _spoolup_block = set; } // set_roll, set_pitch, set_yaw, set_throttle void set_roll(float roll_in) { _roll_in = roll_in; }; // range -1 ~ +1 void set_roll_ff(float roll_in) { _roll_in_ff = roll_in; }; // range -1 ~ +1 void set_pitch(float pitch_in) { _pitch_in = pitch_in; }; // range -1 ~ +1 void set_pitch_ff(float pitch_in) { _pitch_in_ff = pitch_in; }; // range -1 ~ +1 void set_yaw(float yaw_in) { _yaw_in = yaw_in; }; // range -1 ~ +1 void set_yaw_ff(float yaw_in) { _yaw_in_ff = yaw_in; }; // range -1 ~ +1 void set_throttle(float throttle_in) { _throttle_in = throttle_in; }; // range 0 ~ 1 void set_throttle_avg_max(float throttle_avg_max) { _throttle_avg_max = constrain_float(throttle_avg_max, 0.0f, 1.0f); }; // range 0 ~ 1 void set_throttle_filter_cutoff(float filt_hz) { _throttle_filter.set_cutoff_frequency(filt_hz); } void set_slew_filter_cutoff(float filt_hz) { _throttle_slew_filter.set_cutoff_frequency(filt_hz); } void set_forward(float forward_in) { _forward_in = forward_in; }; // range -1 ~ +1 void set_lateral(float lateral_in) { _lateral_in = lateral_in; }; // range -1 ~ +1 // for 6DoF vehicles, sets the roll and pitch offset, this rotates the thrust vector in body frame virtual void set_roll_pitch(float roll_deg, float pitch_deg) {}; // accessors for roll, pitch, yaw and throttle inputs to motors float get_roll() const { return _roll_in; } float get_roll_ff() const { return _roll_in_ff; } float get_pitch() const { return _pitch_in; } float get_pitch_ff() const { return _pitch_in_ff; } float get_yaw() const { return _yaw_in; } float get_yaw_ff() const { return _yaw_in_ff; } float get_throttle_out() const { return _throttle_out; } float get_throttle() const { return constrain_float(_throttle_filter.get(), 0.0f, 1.0f); } float get_throttle_bidirectional() const { return constrain_float(2 * (_throttle_filter.get() - 0.5f), -1.0f, 1.0f); } float get_throttle_slew_rate() const { return _throttle_slew_rate; } float get_forward() const { return _forward_in; } float get_lateral() const { return _lateral_in; } virtual float get_throttle_hover() const = 0; // motor failure handling void set_thrust_boost(bool enable) { _thrust_boost = enable; } bool get_thrust_boost() const { return _thrust_boost; } virtual uint8_t get_lost_motor() const { return 0; } // desired spool states enum class DesiredSpoolState : uint8_t { SHUT_DOWN = 0, // all motors should move to stop GROUND_IDLE = 1, // all motors should move to ground idle THROTTLE_UNLIMITED = 2, // motors should move to being a state where throttle is unconstrained (e.g. by start up procedure) }; void set_desired_spool_state(enum DesiredSpoolState spool); enum DesiredSpoolState get_desired_spool_state(void) const { return _spool_desired; } // spool states enum class SpoolState : uint8_t { SHUT_DOWN = 0, // all motors stop GROUND_IDLE = 1, // all motors at ground idle SPOOLING_UP = 2, // increasing maximum throttle while stabilizing THROTTLE_UNLIMITED = 3, // throttle is no longer constrained by start up procedure SPOOLING_DOWN = 4, // decreasing maximum throttle while stabilizing }; // get_spool_state - get current spool state enum SpoolState get_spool_state(void) const { return _spool_state; } // set_dt / get_dt - dt is the time since the last time the motor mixers were updated // _dt should be set based on the time of the last IMU read used by these controllers // the motor mixers should run on each loop to ensure normal operation void set_dt(float dt) { _dt = dt; } float get_dt() const { return _dt; } // structure for holding motor limit flags struct AP_Motors_limit { bool roll; // we have reached roll or pitch limit bool pitch; // we have reached roll or pitch limit bool yaw; // we have reached yaw limit bool throttle_lower; // we have reached throttle's lower limit bool throttle_upper; // we have reached throttle's upper limit } limit; // set limit flag for pitch, roll and yaw void set_limit_flag_pitch_roll_yaw(bool flag); #if AP_SCRIPTING_ENABLED // set limit flag for pitch, roll and yaw void set_external_limits(bool roll, bool pitch, bool yaw, bool throttle_lower, bool throttle_upper); #endif // // virtual functions that should be implemented by child classes // // set update rate to motors - a value in hertz virtual void set_update_rate( uint16_t speed_hz ) { _speed_hz = speed_hz; } // init virtual void init(motor_frame_class frame_class, motor_frame_type frame_type) = 0; // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) virtual void set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) = 0; // output - sends commands to the motors virtual void output() = 0; // output_min - sends minimum values out to the motors virtual void output_min() = 0; // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void output_test_seq(uint8_t motor_seq, int16_t pwm); // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict virtual uint32_t get_motor_mask() = 0; // pilot input in the -1 ~ +1 range for roll, pitch and yaw. 0~1 range for throttle void set_radio_passthrough(float roll_input, float pitch_input, float throttle_input, float yaw_input); // return the roll factor of any motor, this is used for tilt rotors and tail sitters // using copter motors for forward flight virtual float get_roll_factor(uint8_t i) { return 0.0f; } // return the pitch factor of any motor virtual float get_pitch_factor(uint8_t i) { return 0.0f; } // return whether a motor is enabled or not virtual bool is_motor_enabled(uint8_t i) { return false; } // This function required for tradheli. Tradheli initializes targets when going from unarmed to armed state. // This function is overriden in motors_heli class. Always true for multicopters. virtual bool init_targets_on_arming() const { return true; } // returns true if the configured PWM type is digital and should have fixed endpoints bool is_digital_pwm_type() const; // returns true is pwm type is brushed bool is_brushed_pwm_type() const { return _pwm_type == PWM_TYPE_BRUSHED; } // returns true is pwm type is normal bool is_normal_pwm_type() const { return (_pwm_type == PWM_TYPE_NORMAL) || (_pwm_type == PWM_TYPE_PWM_RANGE) || (_pwm_type == PWM_TYPE_PWM_ANGLE); } MAV_TYPE get_frame_mav_type() const { return _mav_type; } // direct motor write virtual void rc_write(uint8_t chan, uint16_t pwm); #if AP_SCRIPTING_ENABLED void set_frame_string(const char * str); #endif #if HAL_LOGGING_ENABLED // write log, to be called at 10hz virtual void Log_Write() {}; #endif enum MotorOptions : uint8_t { BATT_RAW_VOLTAGE = (1 << 0U) }; bool has_option(MotorOptions option) { return _options.get() & uint8_t(option); } protected: // output functions that should be overloaded by child classes virtual void output_armed_stabilizing() = 0; virtual void rc_write_angle(uint8_t chan, int16_t angle_cd); virtual void rc_set_freq(uint32_t mask, uint16_t freq_hz); /* map an internal motor mask to real motor mask, accounting for SERVOn_FUNCTION mappings, and allowing for multiple outputs per motor number */ uint32_t motor_mask_to_srv_channel_mask(uint32_t mask) const; // add a motor to the motor map void add_motor_num(int8_t motor_num); // update the throttle input filter virtual void update_throttle_filter() = 0; // save parameters as part of disarming virtual void save_params_on_disarm() {} // internal variables float _dt; // time difference (in seconds) since the last loop time uint16_t _speed_hz; // speed in hz to send updates to motors float _roll_in; // desired roll control from attitude controllers, -1 ~ +1 float _roll_in_ff; // desired roll feed forward control from attitude controllers, -1 ~ +1 float _pitch_in; // desired pitch control from attitude controller, -1 ~ +1 float _pitch_in_ff; // desired pitch feed forward control from attitude controller, -1 ~ +1 float _yaw_in; // desired yaw control from attitude controller, -1 ~ +1 float _yaw_in_ff; // desired yaw feed forward control from attitude controller, -1 ~ +1 float _throttle_in; // last throttle input from set_throttle caller float _throttle_out; // throttle after mixing is complete float _throttle_slew_rate; // throttle slew rate from input float _forward_in; // last forward input from set_forward caller float _lateral_in; // last lateral input from set_lateral caller float _throttle_avg_max; // last throttle input from set_throttle_avg_max LowPassFilterFloat _throttle_filter; // pilot throttle input filter DerivativeFilterFloat_Size7 _throttle_slew; // throttle output slew detector LowPassFilterFloat _throttle_slew_filter; // filter for the output of the throttle slew DesiredSpoolState _spool_desired; // desired spool state SpoolState _spool_state; // current spool mode // mask of what channels need fast output uint32_t _motor_fast_mask; // Used with PWM_TYPE_PWM_RANGE and PWM_TYPE_PWM_ANGLE struct { // Mask of motors using scaled output uint32_t mask; // Offset used to convert from PWM to scaled value float offset; } _motor_pwm_scaled; // pass through variables float _roll_radio_passthrough; // roll input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed float _pitch_radio_passthrough; // pitch input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed float _throttle_radio_passthrough; // throttle/collective input from pilot in 0 ~ 1 range. used for setup and providing servo feedback while landed float _yaw_radio_passthrough; // yaw input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed AP_Int8 _pwm_type; // PWM output type // motor failure handling bool _thrust_boost; // true if thrust boost is enabled to handle motor failure bool _thrust_balanced; // true when output thrust is well balanced float _thrust_boost_ratio; // choice between highest and second highest motor output for output mixing (0 ~ 1). Zero is normal operation // motor options AP_Int16 _options; MAV_TYPE _mav_type; // MAV_TYPE_GENERIC = 0; enum pwm_type { PWM_TYPE_NORMAL = 0, PWM_TYPE_ONESHOT = 1, PWM_TYPE_ONESHOT125 = 2, PWM_TYPE_BRUSHED = 3, PWM_TYPE_DSHOT150 = 4, PWM_TYPE_DSHOT300 = 5, PWM_TYPE_DSHOT600 = 6, PWM_TYPE_DSHOT1200 = 7, PWM_TYPE_PWM_RANGE = 8, PWM_TYPE_PWM_ANGLE = 9 }; // return string corresponding to frame_class virtual const char* _get_frame_string() const = 0; // return string corresponding to frame_type virtual const char* get_type_string() const { return ""; } // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 virtual void _output_test_seq(uint8_t motor_seq, int16_t pwm) = 0; #if AP_SCRIPTING_ENABLED // Custom frame string set from scripting char* custom_frame_string; // external limits from scripting AP_Motors_limit external_limits; #endif private: bool _armed; // 0 if disarmed, 1 if armed bool _interlock; // 1 if the motor interlock is enabled (i.e. motors run), 0 if disabled (motors don't run) bool _initialised_ok; // 1 if initialisation was successful bool _spoolup_block; // true if spoolup is blocked static AP_Motors *_singleton; }; namespace AP { AP_Motors *motors(); };