/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* SITL.cpp - software in the loop state */ #include "SITL.h" #include #include #include #include extern const AP_HAL::HAL& hal; namespace SITL { // table of user settable parameters const AP_Param::GroupInfo SITL::var_info[] = { AP_GROUPINFO("BARO_RND", 0, SITL, baro_noise, 0.2f), AP_GROUPINFO("GYR_RND", 1, SITL, gyro_noise, 0), AP_GROUPINFO("ACC_RND", 2, SITL, accel_noise, 0), AP_GROUPINFO("MAG_RND", 3, SITL, mag_noise, 0), AP_GROUPINFO("GPS_DISABLE",4, SITL, gps_disable, 0), AP_GROUPINFO("DRIFT_SPEED",5, SITL, drift_speed, 0.05f), AP_GROUPINFO("DRIFT_TIME", 6, SITL, drift_time, 5), AP_GROUPINFO("GPS_DELAY", 7, SITL, gps_delay, 1), AP_GROUPINFO("ENGINE_MUL", 8, SITL, engine_mul, 1), AP_GROUPINFO("WIND_SPD", 9, SITL, wind_speed, 0), AP_GROUPINFO("WIND_DIR", 10, SITL, wind_direction, 180), AP_GROUPINFO("WIND_TURB", 11, SITL, wind_turbulance, 0), AP_GROUPINFO("GPS_TYPE", 12, SITL, gps_type, SITL::GPS_TYPE_UBLOX), AP_GROUPINFO("GPS_BYTELOSS", 13, SITL, gps_byteloss, 0), AP_GROUPINFO("GPS_NUMSATS", 14, SITL, gps_numsats, 10), AP_GROUPINFO("MAG_ERROR", 15, SITL, mag_error, 0), AP_GROUPINFO("SERVO_RATE", 16, SITL, servo_rate, 0), AP_GROUPINFO("GPS_GLITCH", 17, SITL, gps_glitch, 0), AP_GROUPINFO("GPS_HZ", 18, SITL, gps_hertz, 5), AP_GROUPINFO("BATT_VOLTAGE", 19, SITL, batt_voltage, 12.6f), AP_GROUPINFO("ARSPD_RND", 20, SITL, arspd_noise, 0.5f), AP_GROUPINFO("ACCEL_FAIL", 21, SITL, accel_fail, 0), AP_GROUPINFO("BARO_DRIFT", 22, SITL, baro_drift, 0), AP_GROUPINFO("SONAR_GLITCH", 23, SITL, sonar_glitch, 0), AP_GROUPINFO("SONAR_RND", 24, SITL, sonar_noise, 0), AP_GROUPINFO("RC_FAIL", 25, SITL, rc_fail, 0), AP_GROUPINFO("GPS2_ENABLE", 26, SITL, gps2_enable, 0), AP_GROUPINFO("BARO_DISABLE", 27, SITL, baro_disable, 0), AP_GROUPINFO("FLOAT_EXCEPT", 28, SITL, float_exception, 1), AP_GROUPINFO("MAG_MOT", 29, SITL, mag_mot, 0), AP_GROUPINFO("ACC_BIAS", 30, SITL, accel_bias, 0), AP_GROUPINFO("BARO_GLITCH", 31, SITL, baro_glitch, 0), AP_GROUPINFO("SONAR_SCALE", 32, SITL, sonar_scale, 12.1212f), AP_GROUPINFO("FLOW_ENABLE", 33, SITL, flow_enable, 0), AP_GROUPINFO("TERRAIN", 34, SITL, terrain_enable, 1), AP_GROUPINFO("FLOW_RATE", 35, SITL, flow_rate, 10), AP_GROUPINFO("FLOW_DELAY", 36, SITL, flow_delay, 0), AP_GROUPINFO("GPS_DRIFTALT", 37, SITL, gps_drift_alt, 0), AP_GROUPINFO("BARO_DELAY", 38, SITL, baro_delay, 0), AP_GROUPINFO("MAG_DELAY", 39, SITL, mag_delay, 0), AP_GROUPINFO("WIND_DELAY", 40, SITL, wind_delay, 0), AP_GROUPINFO("MAG_OFS", 41, SITL, mag_ofs, 0), AP_GROUPINFO("ACC2_RND", 42, SITL, accel2_noise, 0), AP_GROUPINFO("ARSPD_FAIL", 43, SITL, arspd_fail, 0), AP_GROUPINFO("GYR_SCALE", 44, SITL, gyro_scale, 0), AP_GROUPINFO("ADSB_COUNT", 45, SITL, adsb_plane_count, -1), AP_GROUPINFO("ADSB_RADIUS", 46, SITL, adsb_radius_m, 10000), AP_GROUPINFO("ADSB_ALT", 47, SITL, adsb_altitude_m, 1000), AP_GROUPINFO("MAG_ALY", 48, SITL, mag_anomaly_ned, 0), AP_GROUPINFO("MAG_ALY_HGT", 49, SITL, mag_anomaly_hgt, 1.0f), AP_GROUPINFO("PIN_MASK", 50, SITL, pin_mask, 0), AP_GROUPEND }; /* report SITL state via MAVLink */ void SITL::simstate_send(mavlink_channel_t chan) { float yaw; // convert to same conventions as DCM yaw = state.yawDeg; if (yaw > 180) { yaw -= 360; } mavlink_msg_simstate_send(chan, ToRad(state.rollDeg), ToRad(state.pitchDeg), ToRad(yaw), state.xAccel, state.yAccel, state.zAccel, radians(state.rollRate), radians(state.pitchRate), radians(state.yawRate), state.latitude*1.0e7, state.longitude*1.0e7); } /* report SITL state to DataFlash */ void SITL::Log_Write_SIMSTATE(DataFlash_Class *DataFlash) { float yaw; // convert to same conventions as DCM yaw = state.yawDeg; if (yaw > 180) { yaw -= 360; } struct log_AHRS pkt = { LOG_PACKET_HEADER_INIT(LOG_SIMSTATE_MSG), time_us : AP_HAL::micros64(), roll : (int16_t)(state.rollDeg*100), pitch : (int16_t)(state.pitchDeg*100), yaw : (uint16_t)(wrap_360_cd(yaw*100)), alt : (float)state.altitude, lat : (int32_t)(state.latitude*1.0e7), lng : (int32_t)(state.longitude*1.0e7) }; DataFlash->WriteBlock(&pkt, sizeof(pkt)); } /* convert a set of roll rates from earth frame to body frame output values are in radians/second */ void SITL::convert_body_frame(double rollDeg, double pitchDeg, double rollRate, double pitchRate, double yawRate, double *p, double *q, double *r) { double phi, theta, phiDot, thetaDot, psiDot; phi = ToRad(rollDeg); theta = ToRad(pitchDeg); phiDot = ToRad(rollRate); thetaDot = ToRad(pitchRate); psiDot = ToRad(yawRate); *p = phiDot - psiDot*sin(theta); *q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta); *r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot; } /* convert angular velocities from body frame to earth frame. all inputs and outputs are in radians/s */ Vector3f SITL::convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro) { float p = gyro.x; float q = gyro.y; float r = gyro.z; float phi, theta, psi; dcm.to_euler(&phi, &theta, &psi); float phiDot = p + tanf(theta)*(q*sinf(phi) + r*cosf(phi)); float thetaDot = q*cosf(phi) - r*sinf(phi); if (fabsf(cosf(theta)) < 1.0e-20f) { theta += 1.0e-10f; } float psiDot = (q*sinf(phi) + r*cosf(phi))/cosf(theta); return Vector3f(phiDot, thetaDot, psiDot); } } // namespace SITL