#include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include "UARTDriver.h" #include "Scheduler.h" #include "CANSocketIface.h" #include #include #include #include #include #include #include #include #include #include "SITL_State_common.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace HALSITL; static const struct { const char *name; SITL::SerialRangeFinder *(*createfn)(); } serial_rangefinder_definitions[] { { "ainsteinlrd1", SITL::RF_Ainstein_LR_D1::create }, { "benewake_tf02", SITL::RF_Benewake_TF02::create }, { "benewake_tf03", SITL::RF_Benewake_TF03::create }, { "benewake_tfmini", SITL::RF_Benewake_TFmini::create }, { "blping", SITL::RF_BLping::create }, { "gyus42v2", SITL::RF_GYUS42v2::create }, { "jre", SITL::RF_JRE::create }, { "lanbao", SITL::RF_Lanbao::create }, { "leddarone", SITL::RF_LeddarOne::create }, { "leddarone", SITL::RF_LeddarOne::create }, { "lightwareserial-binary", SITL::RF_LightWareSerialBinary::create }, { "lightwareserial", SITL::RF_LightWareSerial::create }, { "maxsonarseriallv", SITL::RF_MaxsonarSerialLV::create }, { "nmea", SITL::RF_NMEA::create }, { "nmea", SITL::RF_NMEA::create }, { "nooploop_tofsense", SITL::RF_Nooploop::create }, { "rds02uf", SITL::RF_RDS02UF::create }, #if !defined(HAL_BUILD_AP_PERIPH) { "rf_mavlink", SITL::RF_MAVLink::create }, #endif { "teraranger_serial", SITL::RF_TeraRanger_Serial::create }, { "USD1_v0", SITL::RF_USD1_v0::create }, { "USD1_v1", SITL::RF_USD1_v1::create }, { "wasp", SITL::RF_Wasp::create }, }; #define streq(a, b) (!strcmp(a, b)) SITL::SerialDevice *SITL_State_Common::create_serial_sim(const char *name, const char *arg, const uint8_t portNumber) { for (const auto &definition : serial_rangefinder_definitions) { if (!streq(definition.name, name)) { continue; } if (num_serial_rangefinders >= ARRAY_SIZE(serial_rangefinders)) { AP_HAL::panic("Too many simulated serial rangefinders"); } serial_rangefinders[num_serial_rangefinders] = definition.createfn(); return serial_rangefinders[num_serial_rangefinders++]; } if (false) { // this is an empty clause to ease else-if syntax #if !defined(HAL_BUILD_AP_PERIPH) } else if (streq(name, "vicon")) { if (vicon != nullptr) { AP_HAL::panic("Only one vicon system at a time"); } vicon = NEW_NOTHROW SITL::Vicon(); return vicon; #endif #if HAL_SIM_ADSB_ENABLED } else if (streq(name, "adsb")) { // ADSB is a stand-out as it is the only serial device which // will cope with begin() being called multiple times on a // serial port if (adsb == nullptr) { adsb = NEW_NOTHROW SITL::ADSB(); } sitl_model->set_adsb(adsb); return adsb; #endif } else if (streq(name, "frsky-d")) { if (frsky_d != nullptr) { AP_HAL::panic("Only one frsky_d at a time"); } frsky_d = NEW_NOTHROW SITL::Frsky_D(); return frsky_d; // } else if (streq(name, "frsky-SPort")) { // if (frsky_sport != nullptr) { // AP_HAL::panic("Only one frsky_sport at a time"); // } // frsky_sport = NEW_NOTHROW SITL::Frsky_SPort(); // return frsky_sport; // } else if (streq(name, "frsky-SPortPassthrough")) { // if (frsky_sport_passthrough != nullptr) { // AP_HAL::panic("Only one frsky_sport passthrough at a time"); // } // frsky_sport = NEW_NOTHROW SITL::Frsky_SPortPassthrough(); // return frsky_sportpassthrough; #if AP_SIM_CRSF_ENABLED } else if (streq(name, "crsf")) { if (crsf != nullptr) { AP_HAL::panic("Only one crsf at a time"); } crsf = NEW_NOTHROW SITL::CRSF(); return crsf; #endif #if AP_SIM_PS_LD06_ENABLED } else if (streq(name, "ld06")) { if (ld06 != nullptr) { AP_HAL::panic("Only one ld06 at a time"); } ld06 = NEW_NOTHROW SITL::PS_LD06(); return ld06; #endif // AP_SIM_PS_LD06_ENABLED #if HAL_SIM_PS_RPLIDARA2_ENABLED } else if (streq(name, "rplidara2")) { if (rplidara2 != nullptr) { AP_HAL::panic("Only one rplidara2 at a time"); } rplidara2 = NEW_NOTHROW SITL::PS_RPLidarA2(); return rplidara2; #endif #if HAL_SIM_PS_RPLIDARA1_ENABLED } else if (streq(name, "rplidara1")) { if (rplidara1 != nullptr) { AP_HAL::panic("Only one rplidara1 at a time"); } rplidara1 = NEW_NOTHROW SITL::PS_RPLidarA1(); return rplidara1; #endif #if HAL_SIM_PS_TERARANGERTOWER_ENABLED } else if (streq(name, "terarangertower")) { if (terarangertower != nullptr) { AP_HAL::panic("Only one terarangertower at a time"); } terarangertower = NEW_NOTHROW SITL::PS_TeraRangerTower(); return terarangertower; #endif #if HAL_SIM_PS_LIGHTWARE_SF45B_ENABLED } else if (streq(name, "sf45b")) { if (sf45b != nullptr) { AP_HAL::panic("Only one sf45b at a time"); } sf45b = NEW_NOTHROW SITL::PS_LightWare_SF45B(); return sf45b; #endif #if AP_SIM_ADSB_SAGETECH_MXS_ENABLED } else if (streq(name, "sagetech_mxs")) { if (sagetech_mxs != nullptr) { AP_HAL::panic("Only one sagetech_mxs at a time"); } sagetech_mxs = NEW_NOTHROW SITL::ADSB_Sagetech_MXS(); if (adsb == nullptr) { adsb = NEW_NOTHROW SITL::ADSB(); } sitl_model->set_adsb(adsb); return sagetech_mxs; #endif #if AP_SIM_LOWEHEISER_ENABLED } else if (streq(name, "loweheiser")) { sitl_model->set_loweheiser(&_sitl->loweheiser_sim); return &_sitl->loweheiser_sim; #endif #if !defined(HAL_BUILD_AP_PERIPH) } else if (streq(name, "richenpower")) { sitl_model->set_richenpower(&_sitl->richenpower_sim); return &_sitl->richenpower_sim; } else if (streq(name, "fetteconewireesc")) { sitl_model->set_fetteconewireesc(&_sitl->fetteconewireesc_sim); return &_sitl->fetteconewireesc_sim; } else if (streq(name, "ie24")) { sitl_model->set_ie24(&_sitl->ie24_sim); return &_sitl->ie24_sim; #endif // HAL_BUILD_AP_PERIPH } else if (streq(name, "megasquirt")) { if (efi_ms != nullptr) { AP_HAL::panic("Only one megasquirt at a time"); } efi_ms = NEW_NOTHROW SITL::EFI_MegaSquirt(); return efi_ms; } else if (streq(name, "hirth")) { if (efi_hirth != nullptr) { AP_HAL::panic("Only one hirth at a time"); } efi_hirth = NEW_NOTHROW SITL::EFI_Hirth(); return efi_hirth; } else if (streq(name, "VectorNav")) { if (vectornav != nullptr) { AP_HAL::panic("Only one VectorNav at a time"); } vectornav = NEW_NOTHROW SITL::VectorNav(); return vectornav; } else if (streq(name, "MicroStrain5")) { if (microstrain5 != nullptr) { AP_HAL::panic("Only one MicroStrain5 at a time"); } microstrain5 = NEW_NOTHROW SITL::MicroStrain5(); return microstrain5; } else if (streq(name, "MicroStrain7")) { if (microstrain7 != nullptr) { AP_HAL::panic("Only one MicroStrain7 at a time"); } microstrain7 = NEW_NOTHROW SITL::MicroStrain7(); return microstrain7; } else if (streq(name, "ILabs")) { if (inertiallabs != nullptr) { AP_HAL::panic("Only one InertialLabs INS at a time"); } inertiallabs = NEW_NOTHROW SITL::InertialLabs(); return inertiallabs; #if HAL_SIM_AIS_ENABLED } else if (streq(name, "AIS")) { if (ais != nullptr) { AP_HAL::panic("Only one AIS at a time"); } ais = NEW_NOTHROW SITL::AIS(); return ais; #endif } else if (strncmp(name, "gps", 3) == 0) { uint8_t x = atoi(arg); if (x <= 0 || x > ARRAY_SIZE(gps)) { AP_HAL::panic("Bad GPS number %u (%s)", x, arg); } gps[x-1] = NEW_NOTHROW SITL::GPS(x-1); return gps[x-1]; } else if (streq(name, "ELRS")) { // Only allocate if not done already // MAVLink serial ports have begin called several times if (elrs == nullptr) { elrs = NEW_NOTHROW SITL::ELRS(portNumber, this); _sitl->set_stop_MAVLink_sim_state(); } return elrs; } AP_HAL::panic("unknown simulated device: %s", name); } /* update simulators */ void SITL_State_Common::sim_update(void) { #if AP_SIM_SOLOGIMBAL_ENABLED if (gimbal != nullptr) { gimbal->update(*sitl_model); } #endif #if HAL_SIM_ADSB_ENABLED if (adsb != nullptr) { adsb->update(*sitl_model); } #endif #if !defined(HAL_BUILD_AP_PERIPH) if (vicon != nullptr) { Quaternion attitude; sitl_model->get_attitude(attitude); vicon->update(sitl_model->get_location(), sitl_model->get_position_relhome(), sitl_model->get_velocity_ef(), attitude); } #endif for (uint8_t i=0; iupdate(sitl_model->rangefinder_range()); } if (efi_ms != nullptr) { efi_ms->update(); } if (efi_hirth != nullptr) { efi_hirth->update(); } if (frsky_d != nullptr) { frsky_d->update(); } // if (frsky_sport != nullptr) { // frsky_sport->update(); // } // if (frsky_sportpassthrough != nullptr) { // frsky_sportpassthrough->update(); // } #if AP_SIM_CRSF_ENABLED if (crsf != nullptr) { crsf->update(); } #endif #if AP_SIM_PS_LD06_ENABLED if (ld06 != nullptr) { ld06->update(sitl_model->get_location()); } #endif // AP_SIM_PS_LD06_ENABLED #if HAL_SIM_PS_RPLIDARA2_ENABLED if (rplidara2 != nullptr) { rplidara2->update(sitl_model->get_location()); } #endif #if HAL_SIM_PS_RPLIDARA1_ENABLED if (rplidara1 != nullptr) { rplidara1->update(sitl_model->get_location()); } #endif #if HAL_SIM_PS_TERARANGERTOWER_ENABLED if (terarangertower != nullptr) { terarangertower->update(sitl_model->get_location()); } #endif #if HAL_SIM_PS_LIGHTWARE_SF45B_ENABLED if (sf45b != nullptr) { sf45b->update(sitl_model->get_location()); } #endif #if AP_SIM_ADSB_SAGETECH_MXS_ENABLED if (sagetech_mxs != nullptr) { sagetech_mxs->update(sitl_model); } #endif if (vectornav != nullptr) { vectornav->update(); } if (microstrain5 != nullptr) { microstrain5->update(); } if (microstrain7 != nullptr) { microstrain7->update(); } if (inertiallabs != nullptr) { inertiallabs->update(); } #if HAL_SIM_AIS_ENABLED if (ais != nullptr) { ais->update(); } #endif for (uint8_t i=0; iupdate(); } } if (elrs != nullptr) { elrs->update(); } } /* update voltage and current pins */ void SITL_State_Common::update_voltage_current(struct sitl_input &input, float throttle) { float voltage = 0; float current = 0; if (_sitl != nullptr) { if (_sitl->state.battery_voltage <= 0) { if (_vehicle == ArduSub) { voltage = _sitl->batt_voltage; for (uint8_t i=0; i<6; i++) { float pwm = input.servos[i]; //printf("i: %d, pwm: %.2f\n", i, pwm); float fraction = fabsf((pwm - 1500) / 500.0f); voltage -= fraction * 0.5f; float draw = fraction * 15; current += draw; } } else { // simulate simple battery setup // lose 0.7V at full throttle voltage = _sitl->batt_voltage - 0.7f * throttle; // assume 50A at full throttle current = 50.0f * throttle; } } else { // FDM provides voltage and current voltage = _sitl->state.battery_voltage; current = _sitl->state.battery_current; } } // assume 3DR power brick voltage_pin_voltage = (voltage / 10.1f); current_pin_voltage = current/17.0f; // fake battery2 as just a 25% gain on the first one voltage2_pin_voltage = voltage_pin_voltage * .25f; current2_pin_voltage = current_pin_voltage * .25f; } #endif // HAL_BOARD_SITL