/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // forward declarations to make compiler happy static void do_takeoff(const AP_Mission::Mission_Command& cmd); static void do_nav_wp(const AP_Mission::Mission_Command& cmd); static void do_land(const AP_Mission::Mission_Command& cmd); static void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd); static void do_circle(const AP_Mission::Mission_Command& cmd); static void do_loiter_time(const AP_Mission::Mission_Command& cmd); static void do_spline_wp(const AP_Mission::Mission_Command& cmd); static void do_wait_delay(const AP_Mission::Mission_Command& cmd); static void do_within_distance(const AP_Mission::Mission_Command& cmd); static void do_change_alt(const AP_Mission::Mission_Command& cmd); static void do_yaw(const AP_Mission::Mission_Command& cmd); static void do_change_speed(const AP_Mission::Mission_Command& cmd); static void do_set_home(const AP_Mission::Mission_Command& cmd); static void do_roi(const AP_Mission::Mission_Command& cmd); #if PARACHUTE == ENABLED static void do_parachute(const AP_Mission::Mission_Command& cmd); #endif static bool verify_nav_wp(const AP_Mission::Mission_Command& cmd); static bool verify_spline_wp(const AP_Mission::Mission_Command& cmd); static void auto_spline_start(const Vector3f& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Vector3f& next_spline_destination); // start_command - this function will be called when the ap_mission lib wishes to start a new command static bool start_command(const AP_Mission::Mission_Command& cmd) { // To-Do: logging when new commands start/end if (g.log_bitmask & MASK_LOG_CMD) { Log_Write_Cmd(cmd); } switch(cmd.id) { /// /// navigation commands /// case MAV_CMD_NAV_TAKEOFF: // 22 do_takeoff(cmd); break; case MAV_CMD_NAV_WAYPOINT: // 16 Navigate to Waypoint do_nav_wp(cmd); break; case MAV_CMD_NAV_LAND: // 21 LAND to Waypoint do_land(cmd); break; case MAV_CMD_NAV_LOITER_UNLIM: // 17 Loiter indefinitely do_loiter_unlimited(cmd); break; case MAV_CMD_NAV_LOITER_TURNS: //18 Loiter N Times do_circle(cmd); break; case MAV_CMD_NAV_LOITER_TIME: // 19 do_loiter_time(cmd); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: //20 do_RTL(); break; case MAV_CMD_NAV_SPLINE_WAYPOINT: // 82 Navigate to Waypoint using spline do_spline_wp(cmd); break; // // conditional commands // case MAV_CMD_CONDITION_DELAY: // 112 do_wait_delay(cmd); break; case MAV_CMD_CONDITION_DISTANCE: // 114 do_within_distance(cmd); break; case MAV_CMD_CONDITION_CHANGE_ALT: // 113 do_change_alt(cmd); break; case MAV_CMD_CONDITION_YAW: // 115 do_yaw(cmd); break; /// /// do commands /// case MAV_CMD_DO_CHANGE_SPEED: // 178 do_change_speed(cmd); break; case MAV_CMD_DO_SET_HOME: // 179 do_set_home(cmd); break; case MAV_CMD_DO_SET_SERVO: ServoRelayEvents.do_set_servo(cmd.content.servo.channel, cmd.content.servo.pwm); break; case MAV_CMD_DO_SET_RELAY: ServoRelayEvents.do_set_relay(cmd.content.relay.num, cmd.content.relay.state); break; case MAV_CMD_DO_REPEAT_SERVO: ServoRelayEvents.do_repeat_servo(cmd.content.repeat_servo.channel, cmd.content.repeat_servo.pwm, cmd.content.repeat_servo.repeat_count, cmd.content.repeat_servo.cycle_time * 1000.0f); break; case MAV_CMD_DO_REPEAT_RELAY: ServoRelayEvents.do_repeat_relay(cmd.content.repeat_relay.num, cmd.content.repeat_relay.repeat_count, cmd.content.repeat_relay.cycle_time * 1000.0f); break; case MAV_CMD_DO_SET_ROI: // 201 // point the copter and camera at a region of interest (ROI) do_roi(cmd); break; #if CAMERA == ENABLED case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| break; case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| break; case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty| do_take_picture(); break; case MAV_CMD_DO_SET_CAM_TRIGG_DIST: camera.set_trigger_distance(cmd.content.cam_trigg_dist.meters); break; #endif #if MOUNT == ENABLED case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty| camera_mount.configure_cmd(); break; case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty| camera_mount.control_cmd(); break; #endif #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: // Mission command to configure or release parachute do_parachute(cmd); break; #endif default: // do nothing with unrecognized MAVLink messages break; } // always return success return true; } /********************************************************************************/ // Verify command Handlers /********************************************************************************/ // verify_command - this will be called repeatedly by ap_mission lib to ensure the active commands are progressing // should return true once the active navigation command completes successfully // called at 10hz or higher static bool verify_command(const AP_Mission::Mission_Command& cmd) { switch(cmd.id) { // // navigation commands // case MAV_CMD_NAV_TAKEOFF: return verify_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: return verify_nav_wp(cmd); break; case MAV_CMD_NAV_LAND: return verify_land(); break; case MAV_CMD_NAV_LOITER_UNLIM: return verify_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: return verify_circle(); break; case MAV_CMD_NAV_LOITER_TIME: return verify_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: return verify_RTL(); break; case MAV_CMD_NAV_SPLINE_WAYPOINT: return verify_spline_wp(cmd); break; /// /// conditional commands /// case MAV_CMD_CONDITION_DELAY: return verify_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: return verify_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: return verify_change_alt(); break; case MAV_CMD_CONDITION_YAW: return verify_yaw(); break; #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: // assume parachute was released successfully return true; break; #endif default: // return true if we do not recognise the command so that we move on to the next command return true; break; } } // exit_mission - function that is called once the mission completes static void exit_mission() { // if we are not on the ground switch to loiter or land if(!ap.land_complete) { // try to enter loiter but if that fails land if (!set_mode(LOITER)) { set_mode(LAND); } }else{ #if LAND_REQUIRE_MIN_THROTTLE_TO_DISARM == ENABLED // disarm when the landing detector says we've landed and throttle is at minimum if (g.rc_3.control_in == 0 || failsafe.radio) { init_disarm_motors(); } #else // if we've landed it's safe to disarm init_disarm_motors(); #endif } } /********************************************************************************/ // /********************************************************************************/ // do_RTL - start Return-to-Launch static void do_RTL(void) { // start rtl in auto flight mode auto_rtl_start(); } /********************************************************************************/ // Nav (Must) commands /********************************************************************************/ // do_takeoff - initiate takeoff navigation command static void do_takeoff(const AP_Mission::Mission_Command& cmd) { // Set wp navigation target to safe altitude above current position float takeoff_alt = cmd.content.location.alt; takeoff_alt = max(takeoff_alt,current_loc.alt); takeoff_alt = max(takeoff_alt,100.0f); auto_takeoff_start(takeoff_alt); } // do_nav_wp - initiate move to next waypoint static void do_nav_wp(const AP_Mission::Mission_Command& cmd) { Vector3f local_pos = pv_location_to_vector(cmd.content.location); // this will be used to remember the time in millis after we reach or pass the WP. loiter_time = 0; // this is the delay, stored in seconds loiter_time_max = abs(cmd.p1); // Set wp navigation target auto_wp_start(local_pos); // if no delay set the waypoint as "fast" if (loiter_time_max == 0 ) { wp_nav.set_fast_waypoint(true); } } // do_land - initiate landing procedure static void do_land(const AP_Mission::Mission_Command& cmd) { // To-Do: check if we have already landed // if location provided we fly to that location at current altitude if (cmd.content.location.lat != 0 || cmd.content.location.lng != 0) { // set state to fly to location land_state = LAND_STATE_FLY_TO_LOCATION; // calculate and set desired location above landing target Vector3f pos = pv_location_to_vector(cmd.content.location); pos.z = current_loc.alt; auto_wp_start(pos); }else{ // set landing state land_state = LAND_STATE_DESCENDING; // initialise landing controller auto_land_start(); } } // do_loiter_unlimited - start loitering with no end conditions // note: caller should set yaw_mode static void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd) { Vector3f target_pos; // get current position Vector3f curr_pos = inertial_nav.get_position(); // default to use position provided target_pos = pv_location_to_vector(cmd.content.location); // use current location if not provided if(cmd.content.location.lat == 0 && cmd.content.location.lng == 0) { wp_nav.get_wp_stopping_point_xy(target_pos); } // use current altitude if not provided // To-Do: use z-axis stopping point instead of current alt if( cmd.content.location.alt == 0 ) { target_pos.z = curr_pos.z; } // start way point navigator and provide it the desired location auto_wp_start(target_pos); } // do_circle - initiate moving in a circle static void do_circle(const AP_Mission::Mission_Command& cmd) { Vector3f curr_pos = inertial_nav.get_position(); Vector3f circle_center = pv_location_to_vector(cmd.content.location); // set target altitude if not provided if (circle_center.z == 0) { circle_center.z = curr_pos.z; } // set lat/lon position if not provided // To-Do: use stopping point instead of current location if (cmd.content.location.lat == 0 && cmd.content.location.lng == 0) { circle_center.x = curr_pos.x; circle_center.y = curr_pos.y; } // start auto_circle auto_circle_start(circle_center); // record number of desired rotations from mission command circle_desired_rotations = cmd.p1; } // do_loiter_time - initiate loitering at a point for a given time period // note: caller should set yaw_mode static void do_loiter_time(const AP_Mission::Mission_Command& cmd) { Vector3f target_pos; // get current position Vector3f curr_pos = inertial_nav.get_position(); // default to use position provided target_pos = pv_location_to_vector(cmd.content.location); // use current location if not provided if(cmd.content.location.lat == 0 && cmd.content.location.lng == 0) { wp_nav.get_wp_stopping_point_xy(target_pos); } // use current altitude if not provided if( cmd.content.location.alt == 0 ) { target_pos.z = curr_pos.z; } // start way point navigator and provide it the desired location auto_wp_start(target_pos); // setup loiter timer loiter_time = 0; loiter_time_max = cmd.p1; // units are (seconds) } // do_spline_wp - initiate move to next waypoint static void do_spline_wp(const AP_Mission::Mission_Command& cmd) { Vector3f local_pos = pv_location_to_vector(cmd.content.location); // this will be used to remember the time in millis after we reach or pass the WP. loiter_time = 0; // this is the delay, stored in seconds loiter_time_max = abs(cmd.p1); // determine segment start and end type bool stopped_at_start = true; AC_WPNav::spline_segment_end_type seg_end_type = AC_WPNav::SEGMENT_END_STOP; AP_Mission::Mission_Command temp_cmd; Vector3f next_destination; // end of next segment // if previous command was a wp_nav command with no delay set stopped_at_start to false // To-Do: move processing of delay into wp-nav controller to allow it to determine the stopped_at_start value itself? uint16_t prev_cmd_idx = mission.get_prev_nav_cmd_index(); if (prev_cmd_idx != AP_MISSION_CMD_INDEX_NONE) { if (mission.read_cmd_from_storage(prev_cmd_idx, temp_cmd)) { if ((temp_cmd.id == MAV_CMD_NAV_WAYPOINT || temp_cmd.id == MAV_CMD_NAV_SPLINE_WAYPOINT) && temp_cmd.p1 == 0) { stopped_at_start = false; } } } // if there is no delay at the end of this segment get next nav command if (cmd.p1 == 0 && mission.get_next_nav_cmd(cmd.index+1, temp_cmd)) { // if the next nav command is a waypoint set end type to spline or straight if (temp_cmd.id == MAV_CMD_NAV_WAYPOINT) { seg_end_type = AC_WPNav::SEGMENT_END_STRAIGHT; next_destination = pv_location_to_vector(temp_cmd.content.location); }else if (temp_cmd.id == MAV_CMD_NAV_SPLINE_WAYPOINT) { seg_end_type = AC_WPNav::SEGMENT_END_SPLINE; next_destination = pv_location_to_vector(temp_cmd.content.location); } } // set spline navigation target auto_spline_start(local_pos, stopped_at_start, seg_end_type, next_destination); } #if PARACHUTE == ENABLED // do_parachute - configure or release parachute static void do_parachute(const AP_Mission::Mission_Command& cmd) { switch (cmd.p1) { case PARACHUTE_DISABLE: parachute.enabled(false); Log_Write_Event(DATA_PARACHUTE_DISABLED); break; case PARACHUTE_ENABLE: parachute.enabled(true); Log_Write_Event(DATA_PARACHUTE_ENABLED); break; case PARACHUTE_RELEASE: parachute_release(); break; default: // do nothing break; } } #endif /********************************************************************************/ // Verify Nav (Must) commands /********************************************************************************/ // verify_takeoff - check if we have completed the takeoff static bool verify_takeoff() { // have we reached our target altitude? return wp_nav.reached_wp_destination(); } // verify_land - returns true if landing has been completed static bool verify_land() { bool retval = false; switch( land_state ) { case LAND_STATE_FLY_TO_LOCATION: // check if we've reached the location if (wp_nav.reached_wp_destination()) { // get destination so we can use it for loiter target Vector3f dest = wp_nav.get_wp_destination(); // initialise landing controller auto_land_start(dest); // advance to next state land_state = LAND_STATE_DESCENDING; } break; case LAND_STATE_DESCENDING: // rely on THROTTLE_LAND mode to correctly update landing status retval = ap.land_complete; break; default: // this should never happen // TO-DO: log an error retval = true; break; } // true is returned if we've successfully landed return retval; } // verify_nav_wp - check if we have reached the next way point static bool verify_nav_wp(const AP_Mission::Mission_Command& cmd) { // check if we have reached the waypoint if( !wp_nav.reached_wp_destination() ) { return false; } // start timer if necessary if(loiter_time == 0) { loiter_time = millis(); } // check if timer has run out if (((millis() - loiter_time) / 1000) >= loiter_time_max) { gcs_send_text_fmt(PSTR("Reached Command #%i"),cmd.index); return true; }else{ return false; } } static bool verify_loiter_unlimited() { return false; } // verify_loiter_time - check if we have loitered long enough static bool verify_loiter_time() { // return immediately if we haven't reached our destination if (!wp_nav.reached_wp_destination()) { return false; } // start our loiter timer if( loiter_time == 0 ) { loiter_time = millis(); } // check if loiter timer has run out return (((millis() - loiter_time) / 1000) >= loiter_time_max); } // verify_circle - check if we have circled the point enough static bool verify_circle() { // have we rotated around the center enough times? return fabsf(circle_nav.get_angle_total()/(2*M_PI)) >= circle_desired_rotations; } // externs to remove compiler warning extern bool rtl_state_complete; // verify_RTL - handles any state changes required to implement RTL // do_RTL should have been called once first to initialise all variables // returns true with RTL has completed successfully static bool verify_RTL() { return (rtl_state_complete && (rtl_state == FinalDescent || rtl_state == Land)); } // verify_spline_wp - check if we have reached the next way point using spline static bool verify_spline_wp(const AP_Mission::Mission_Command& cmd) { // check if we have reached the waypoint if( !wp_nav.reached_wp_destination() ) { return false; } // start timer if necessary if(loiter_time == 0) { loiter_time = millis(); } // check if timer has run out if (((millis() - loiter_time) / 1000) >= loiter_time_max) { gcs_send_text_fmt(PSTR("Reached Command #%i"),cmd.index); return true; }else{ return false; } } /********************************************************************************/ // Condition (May) commands /********************************************************************************/ static void do_wait_delay(const AP_Mission::Mission_Command& cmd) { condition_start = millis(); condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds } static void do_change_alt(const AP_Mission::Mission_Command& cmd) { // adjust target appropriately for each nav mode if (control_mode == AUTO) { switch (auto_mode) { case Auto_TakeOff: // To-Do: adjust waypoint target altitude to new provided altitude break; case Auto_WP: case Auto_Spline: // To-Do; reset origin to current location + stopping distance at new altitude break; case Auto_Land: case Auto_RTL: // ignore altitude break; case Auto_Circle: // move circle altitude up to target (we will need to store this target in circle class) break; } } // To-Do: store desired altitude in a variable so that it can be verified later } static void do_within_distance(const AP_Mission::Mission_Command& cmd) { condition_value = cmd.content.distance.meters * 100; } static void do_yaw(const AP_Mission::Mission_Command& cmd) { // get current yaw target int32_t curr_yaw_target = attitude_control.angle_ef_targets().z; // get final angle, 1 = Relative, 0 = Absolute if (cmd.content.yaw.relative_angle == 0) { // absolute angle yaw_look_at_heading = wrap_360_cd(cmd.content.yaw.angle_deg * 100); }else{ // relative angle yaw_look_at_heading = wrap_360_cd(curr_yaw_target + cmd.content.yaw.angle_deg * 100); } // get turn speed if (cmd.content.yaw.turn_rate_dps == 0 ) { // default to regular auto slew rate yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE; }else{ int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - curr_yaw_target) / 100) / cmd.content.yaw.turn_rate_dps; yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec } // set yaw mode set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); // TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise } /********************************************************************************/ // Verify Condition (May) commands /********************************************************************************/ static bool verify_wait_delay() { if (millis() - condition_start > (uint32_t)max(condition_value,0)) { condition_value = 0; return true; } return false; } static bool verify_change_alt() { // To-Do: use recorded target altitude to verify we have reached the target return true; } static bool verify_within_distance() { if (wp_distance < max(condition_value,0)) { condition_value = 0; return true; } return false; } // verify_yaw - return true if we have reached the desired heading static bool verify_yaw() { if( labs(wrap_180_cd(ahrs.yaw_sensor-yaw_look_at_heading)) <= 200 ) { return true; }else{ return false; } } /********************************************************************************/ // Do (Now) commands /********************************************************************************/ // do_guided - start guided mode static bool do_guided(const AP_Mission::Mission_Command& cmd) { // switch to guided mode if we're not already in guided mode if (control_mode != GUIDED) { if (!set_mode(GUIDED)) { // if we failed to enter guided mode return immediately return false; } } // set wp_nav's destination Vector3f pos = pv_location_to_vector(cmd.content.location); guided_set_destination(pos); return true; } static void do_change_speed(const AP_Mission::Mission_Command& cmd) { if (cmd.content.speed.target_ms > 0) { wp_nav.set_horizontal_velocity(cmd.content.speed.target_ms * 100.0f); } } static void do_set_home(const AP_Mission::Mission_Command& cmd) { if(cmd.p1 == 1) { init_home(); } else { Location loc = cmd.content.location; loc.alt = 0; ahrs.set_home(loc); set_home_is_set(true); } } // do_roi - starts actions required by MAV_CMD_NAV_ROI // this involves either moving the camera to point at the ROI (region of interest) // and possibly rotating the copter to point at the ROI if our mount type does not support a yaw feature // Note: the ROI should already be in the command_nav_queue global variable // TO-DO: add support for other features of MAV_CMD_DO_SET_ROI including pointing at a given waypoint static void do_roi(const AP_Mission::Mission_Command& cmd) { // if location is zero lat, lon and altitude turn off ROI if (auto_yaw_mode == AUTO_YAW_ROI && (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0)) { // set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command set_auto_yaw_mode(get_default_auto_yaw_mode(false)); #if MOUNT == ENABLED // switch off the camera tracking if enabled if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { camera_mount.set_mode_to_default(); } #endif // MOUNT == ENABLED }else{ #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if(camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll) { roi_WP = pv_location_to_vector(cmd.content.location); set_auto_yaw_mode(AUTO_YAW_ROI); } // send the command to the camera mount camera_mount.set_roi_cmd(&cmd.content.location); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implemented) #else // if we have no camera mount aim the quad at the location roi_WP = pv_location_to_vector(cmd.content.location); set_auto_yaw_mode(AUTO_YAW_ROI); #endif // MOUNT == ENABLED } } // do_take_picture - take a picture with the camera library static void do_take_picture() { #if CAMERA == ENABLED camera.trigger_pic(); if (g.log_bitmask & MASK_LOG_CAMERA) { Log_Write_Camera(); } #endif }