// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Sub.h" #if CLI_ENABLED == ENABLED // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details static const struct Menu::command test_menu_commands[] = { #if HIL_MODE == HIL_MODE_DISABLED {"baro", MENU_FUNC(test_baro)}, #endif {"compass", MENU_FUNC(test_compass)}, {"ins", MENU_FUNC(test_ins)}, {"optflow", MENU_FUNC(test_optflow)}, {"relay", MENU_FUNC(test_relay)}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN {"shell", MENU_FUNC(test_shell)}, #endif #if HIL_MODE == HIL_MODE_DISABLED {"rangefinder", MENU_FUNC(test_sonar)}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); int8_t Sub::test_mode(uint8_t argc, const Menu::arg *argv) { test_menu.run(); return 0; } #if HIL_MODE == HIL_MODE_DISABLED int8_t Sub::test_baro(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); init_barometer(true); while(1) { delay(100); read_barometer(); if (!barometer.healthy()) { cliSerial->println("not healthy"); } else { cliSerial->printf("Alt: %0.2fm, Raw: %f Temperature: %.1f\n", (double)(baro_alt / 100.0f), (double)barometer.get_pressure(), (double)barometer.get_temperature()); } if(cliSerial->available() > 0) { return (0); } } return 0; } #endif int8_t Sub::test_compass(uint8_t argc, const Menu::arg *argv) { uint8_t delta_ms_fast_loop; uint8_t medium_loopCounter = 0; if (!g.compass_enabled) { cliSerial->printf("Compass: "); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->println("Compass initialisation failed!"); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_compass(&compass); #if OPTFLOW == ENABLED ahrs.set_optflow(&optflow); #endif report_compass(); // we need the AHRS initialised for this test ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); int16_t counter = 0; float heading = 0; print_hit_enter(); while(1) { delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.0f; // used by DCM integrator fast_loopTimer = millis(); // INS // --- ahrs.update(); medium_loopCounter++; if(medium_loopCounter == 5) { if (compass.read()) { // Calculate heading const Matrix3f &m = ahrs.get_rotation_body_to_ned(); heading = compass.calculate_heading(m); compass.learn_offsets(); } medium_loopCounter = 0; } counter++; if (counter>20) { if (compass.healthy()) { const Vector3f &mag_ofs = compass.get_offsets(); const Vector3f &mag = compass.get_field(); cliSerial->printf("Heading: %d, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n", (int)(wrap_360_cd(ToDeg(heading) * 100)) /100, (double)mag.x, (double)mag.y, (double)mag.z, (double)mag_ofs.x, (double)mag_ofs.y, (double)mag_ofs.z); } else { cliSerial->println("compass not healthy"); } counter=0; } } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->println("saving offsets"); compass.save_offsets(); return (0); } int8_t Sub::test_ins(uint8_t argc, const Menu::arg *argv) { Vector3f gyro, accel; print_hit_enter(); cliSerial->printf("INS\n"); delay(1000); ahrs.init(); ins.init(scheduler.get_loop_rate_hz()); cliSerial->printf("...done\n"); delay(50); while(1) { ins.update(); gyro = ins.get_gyro(); accel = ins.get_accel(); float test = accel.length() / GRAVITY_MSS; cliSerial->printf("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %7.4f \n", (double)accel.x, (double)accel.y, (double)accel.z, (double)gyro.x, (double)gyro.y, (double)gyro.z, (double)test); delay(40); if(cliSerial->available() > 0) { return (0); } } } int8_t Sub::test_optflow(uint8_t argc, const Menu::arg *argv) { #if OPTFLOW == ENABLED if(optflow.enabled()) { cliSerial->printf("dev id: %d\t",(int)optflow.device_id()); print_hit_enter(); while(1) { delay(200); optflow.update(); const Vector2f& flowRate = optflow.flowRate(); cliSerial->printf("flowX : %7.4f\t flowY : %7.4f\t flow qual : %d\n", (double)flowRate.x, (double)flowRate.y, (int)optflow.quality()); if(cliSerial->available() > 0) { return (0); } } } else { cliSerial->printf("OptFlow: "); print_enabled(false); } return (0); #else return (0); #endif // OPTFLOW == ENABLED } int8_t Sub::test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { cliSerial->printf("Relay on\n"); relay.on(0); delay(3000); if(cliSerial->available() > 0) { return (0); } cliSerial->printf("Relay off\n"); relay.off(0); delay(3000); if(cliSerial->available() > 0) { return (0); } } } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN /* * run a debug shell */ int8_t Sub::test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif #if HIL_MODE == HIL_MODE_DISABLED /* * test the rangefinders */ int8_t Sub::test_sonar(uint8_t argc, const Menu::arg *argv) { #if CONFIG_SONAR == ENABLED sonar.init(); cliSerial->printf("RangeFinder: %d devices detected\n", sonar.num_sensors()); print_hit_enter(); while(1) { delay(100); sonar.update(); cliSerial->printf("Primary: status %d distance_cm %d \n", (int)sonar.status(), sonar.distance_cm()); cliSerial->printf("All: device_0 type %d status %d distance_cm %d, device_1 type %d status %d distance_cm %d\n", (int)sonar._type[0], (int)sonar.status(0), sonar.distance_cm(0), (int)sonar._type[1], (int)sonar.status(1), sonar.distance_cm(1)); if(cliSerial->available() > 0) { return (0); } } #endif return (0); } #endif void Sub::print_hit_enter() { cliSerial->printf("Hit Enter to exit.\n\n"); } #endif // CLI_ENABLED