// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Sub.h" /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ #if CLI_ENABLED == ENABLED // This is the help function int8_t Sub::main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Commands:\n" " logs\n" " setup\n" " test\n" " reboot\n" "\n"); return(0); } // Command/function table for the top-level menu. const struct Menu::command main_menu_commands[] = { // command function called // ======= =============== {"logs", MENU_FUNC(process_logs)}, {"setup", MENU_FUNC(setup_mode)}, {"test", MENU_FUNC(test_mode)}, {"reboot", MENU_FUNC(reboot_board)}, {"help", MENU_FUNC(main_menu_help)}, }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); int8_t Sub::reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits void Sub::run_cli(AP_HAL::UARTDriver *port) { cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); // disable main_loop failsafe failsafe_disable(); // cut the engines if(motors.armed()) { motors.armed(false); motors.output(); } while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void mavlink_delay_cb_static() { sub.mavlink_delay_cb(); } static void failsafe_check_static() { sub.failsafe_check(); } void Sub::init_ardupilot() { if (!hal.gpio->usb_connected()) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later delay(1000); } // initialise serial port serial_manager.init_console(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); // // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) // report_version(); // load parameters from EEPROM load_parameters(); BoardConfig.init(); // initialise serial port serial_manager.init(); // init EPM cargo gripper #if EPM_ENABLED == ENABLED epm.init(); #endif // initialise notify system // disable external leds if epm is enabled because of pin conflict on the APM notify.init(true); // initialise battery monitor battery.init(); // Init RSSI rssi.init(); barometer.init(); // Register the mavlink service callback. This will run // anytime there are more than 5ms remaining in a call to // hal.scheduler->delay. hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. ap.usb_connected = true; check_usb_mux(); // init the GCS connected to the console gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0); // init telemetry port gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // setup serial port for telem2 gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1); // setup serial port for fourth telemetry port (not used by default) gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2); #if FRSKY_TELEM_ENABLED == ENABLED // setup frsky frsky_telemetry.init(serial_manager); #endif // identify ourselves correctly with the ground station mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif GCS_MAVLINK::set_dataflash(&DataFlash); // update motor interlock state update_using_interlock(); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up motors and output to escs // initialise which outputs Servo and Relay events can use ServoRelayEvents.set_channel_mask(~motors.get_motor_mask()); relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.init(&DataFlash, serial_manager); if(g.compass_enabled) init_compass(); #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // initialise attitude and position controllers attitude_control.set_dt(MAIN_LOOP_SECONDS); pos_control.set_dt(MAIN_LOOP_SECONDS); // init the optical flow sensor init_optflow(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif #if PRECISION_LANDING == ENABLED // initialise precision landing init_precland(); #endif #ifdef USERHOOK_INIT USERHOOK_INIT #endif #if CLI_ENABLED == ENABLED if (g.cli_enabled) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->println(msg); if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) { gcs[1].get_uart()->println(msg); } if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) { gcs[2].get_uart()->println(msg); } } #endif // CLI_ENABLED #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif if(barometer.num_instances() > 1) { //We have an external MS58XX pressure sensor connected for(int i = 1; i < barometer.num_instances(); i++) { barometer.set_type(i, BARO_TYPE_WATER); //Altitude (depth) is calculated differently underwater barometer.set_precision_multiplier(i, 10); //The MS58XX values reported need to be multiplied by 10 to match units everywhere else } barometer.set_primary_baro(1); //Set the primary baro to external MS58XX } // read Baro pressure at ground //----------------------------- init_barometer(true); // initialise sonar #if CONFIG_SONAR == ENABLED init_sonar(); #endif // initialise AP_RPM library rpm_sensor.init(); // initialise mission library mission.init(); // initialise the flight mode and aux switch // --------------------------- reset_control_switch(); init_aux_switches(); startup_INS_ground(); // set landed flags set_land_complete(true); set_land_complete_maybe(true); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe failsafe_enable(); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); // init vehicle capabilties init_capabilities(); cliSerial->print("\nReady to FLY "); // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Sub::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // calibrate gyros - returns true if succesfully calibrated bool Sub::calibrate_gyros() { // gyro offset calibration sub.ins.init_gyro(); // reset ahrs gyro bias if (sub.ins.gyro_calibrated_ok_all()) { sub.ahrs.reset_gyro_drift(); return true; } return false; } // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Sub::position_ok() { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_position_ok() || optflow_position_ok()); } // ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set bool Sub::ekf_position_ok() { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors.armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } else { // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } } // optflow_position_ok - returns true if optical flow based position estimate is ok bool Sub::optflow_position_ok() { #if OPTFLOW != ENABLED return false; #else // return immediately if optflow is not enabled or EKF not used if (!optflow.enabled() || !ahrs.have_inertial_nav()) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors.armed()) { return (filt_status.flags.pred_horiz_pos_rel); } else { return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } #endif } // update_auto_armed - update status of auto_armed flag void Sub::update_auto_armed() { // disarm checks if(ap.auto_armed){ // if motors are disarmed, auto_armed should also be false if(!motors.armed()) { set_auto_armed(false); return; } // if in stabilize or acro flight mode and throttle is zero, auto-armed should become false if(mode_has_manual_throttle(control_mode) && ap.throttle_zero && !failsafe.radio) { set_auto_armed(false); } }else{ // arm checks // if motors are armed and we are in throw mode, then auto_ermed should be true if(motors.armed() && (!ap.throttle_zero || control_mode == THROW)) { set_auto_armed(true); } } } void Sub::check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == ap.usb_connected) { return; } // the user has switched to/from the telemetry port ap.usb_connected = usb_check; } // frsky_telemetry_send - sends telemetry data using frsky telemetry // should be called at 5Hz by scheduler #if FRSKY_TELEM_ENABLED == ENABLED void Sub::frsky_telemetry_send(void) { frsky_telemetry.send_frames((uint8_t)control_mode); } #endif /* should we log a message type now? */ bool Sub::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED if (!(mask & g.log_bitmask) || in_mavlink_delay) { return false; } bool ret = motors.armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0; if (ret && !DataFlash.logging_started() && !in_log_download) { start_logging(); } return ret; #else return false; #endif }