/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* parent class for aircraft simulators */ #include "SIM_Aircraft.h" #include #include #include #if defined(__CYGWIN__) || defined(__CYGWIN64__) #include #include #include #endif #include #include #include #include using namespace SITL; /* parent class for all simulator types */ Aircraft::Aircraft(const char *frame_str) : ground_level(0.0f), frame_height(0.0f), dcm(), gyro(), gyro_prev(), ang_accel(), velocity_ef(), mass(0.0f), accel_body(0.0f, 0.0f, -GRAVITY_MSS), time_now_us(0), gyro_noise(radians(0.1f)), accel_noise(0.3f), rate_hz(1200.0f), autotest_dir(nullptr), frame(frame_str), num_motors(1), #if defined(__CYGWIN__) || defined(__CYGWIN64__) min_sleep_time(20000) #else min_sleep_time(5000) #endif { // make the SIM_* variables available to simulator backends sitl = AP::sitl(); set_speedup(1.0f); last_wall_time_us = get_wall_time_us(); frame_counter = 0; // allow for orientation settings, such as with tailsitters enum ap_var_type ptype; ahrs_orientation = (AP_Int8 *)AP_Param::find("AHRS_ORIENTATION", &ptype); enum Rotation imu_rotation = ahrs_orientation?(enum Rotation)ahrs_orientation->get():ROTATION_NONE; ahrs_rotation_inv.from_rotation(imu_rotation); ahrs_rotation_inv.transpose(); last_imu_rotation = imu_rotation; terrain = reinterpret_cast(AP_Param::find_object("TERRAIN_")); } void Aircraft::set_start_location(const Location &start_loc, const float start_yaw) { home = start_loc; home_yaw = start_yaw; home_is_set = true; ::printf("Home: %f %f alt=%fm hdg=%f\n", home.lat*1e-7, home.lng*1e-7, home.alt*0.01, home_yaw); location = home; ground_level = home.alt * 0.01f; dcm.from_euler(0.0f, 0.0f, radians(home_yaw)); } /* return difference in altitude between home position and current loc */ float Aircraft::ground_height_difference() const { float h1, h2; if (sitl && sitl->terrain_enable && terrain && terrain->height_amsl(home, h1, false) && terrain->height_amsl(location, h2, false)) { return h2 - h1; } return 0.0f; } void Aircraft::set_precland(SIM_Precland *_precland) { precland = _precland; precland->set_default_location(home.lat * 1.0e-7f, home.lng * 1.0e-7f, static_cast(get_home_yaw())); } /* return current height above ground level (metres) */ float Aircraft::hagl() const { return (-position.z) + home.alt * 0.01f - ground_level - frame_height - ground_height_difference(); } /* return true if we are on the ground */ bool Aircraft::on_ground() const { return hagl() <= 0.001f; // prevent bouncing around ground } /* update location from position */ void Aircraft::update_position(void) { location = home; location.offset(position.x, position.y); location.alt = static_cast(home.alt - position.z * 100.0f); #if 0 // logging of raw sitl data Vector3f accel_ef = dcm * accel_body; // @LoggerMessage: SITL // @Description: Simulation data // @Field: TimeUS: Time since system startup // @Field: VN: Velocity - North component // @Field: VE: Velocity - East component // @Field: VD: Velocity - Down component // @Field: AN: Acceleration - North component // @Field: AE: Acceleration - East component // @Field: AD: Acceleration - Down component // @Field: PN: Position - North component // @Field: PE: Position - East component // @Field: PD: Position - Down component AP::logger().Write("SITL", "TimeUS,VN,VE,VD,AN,AE,AD,PN,PE,PD", "Qfffffffff", AP_HAL::micros64(), velocity_ef.x, velocity_ef.y, velocity_ef.z, accel_ef.x, accel_ef.y, accel_ef.z, position.x, position.y, position.z); #endif } /* update body magnetic field from position and rotation */ void Aircraft::update_mag_field_bf() { // get the magnetic field intensity and orientation float intensity; float declination; float inclination; AP_Declination::get_mag_field_ef(location.lat * 1e-7f, location.lng * 1e-7f, intensity, declination, inclination); // create a field vector and rotate to the required orientation Vector3f mag_ef(1e3f * intensity, 0.0f, 0.0f); Matrix3f R; R.from_euler(0.0f, -ToRad(inclination), ToRad(declination)); mag_ef = R * mag_ef; // calculate frame height above ground const float frame_height_agl = fmaxf((-position.z) + home.alt * 0.01f - ground_level, 0.0f); if (!sitl) { // running example program return; } // calculate scaling factor that varies from 1 at ground level to 1/8 at sitl->mag_anomaly_hgt // Assume magnetic anomaly strength scales with 1/R**3 float anomaly_scaler = (sitl->mag_anomaly_hgt / (frame_height_agl + sitl->mag_anomaly_hgt)); anomaly_scaler = anomaly_scaler * anomaly_scaler * anomaly_scaler; // add scaled anomaly to earth field mag_ef += sitl->mag_anomaly_ned.get() * anomaly_scaler; // Rotate into body frame mag_bf = dcm.transposed() * mag_ef; // add motor interference mag_bf += sitl->mag_mot.get() * battery_current; } /* advance time by deltat in seconds */ void Aircraft::time_advance() { // we only advance time if it hasn't been advanced already by the // backend if (last_time_us == time_now_us) { time_now_us += frame_time_us; } last_time_us = time_now_us; if (use_time_sync) { sync_frame_time(); } } /* setup the frame step time */ void Aircraft::setup_frame_time(float new_rate, float new_speedup) { rate_hz = new_rate; target_speedup = new_speedup; frame_time_us = static_cast(1.0e6f/rate_hz); scaled_frame_time_us = frame_time_us/target_speedup; last_wall_time_us = get_wall_time_us(); achieved_rate_hz = rate_hz; } /* adjust frame_time calculation */ void Aircraft::adjust_frame_time(float new_rate) { if (!is_equal(rate_hz, new_rate)) { rate_hz = new_rate; frame_time_us = static_cast(1.0e6f/rate_hz); scaled_frame_time_us = frame_time_us/target_speedup; } } /* try to synchronise simulation time with wall clock time, taking into account desired speedup This tries to take account of possible granularity of get_wall_time_us() so it works reasonably well on windows */ void Aircraft::sync_frame_time(void) { frame_counter++; uint64_t now = get_wall_time_us(); if (frame_counter >= 40 && now > last_wall_time_us) { const float rate = frame_counter * 1.0e6f/(now - last_wall_time_us); achieved_rate_hz = (0.99f*achieved_rate_hz) + (0.01f * rate); if (achieved_rate_hz < rate_hz * target_speedup) { scaled_frame_time_us *= 0.999f; } else { scaled_frame_time_us /= 0.999f; } #if 0 ::printf("achieved_rate_hz=%.3f rate=%.2f rate_hz=%.3f sft=%.1f\n", static_cast(achieved_rate_hz), static_cast(rate), static_cast(rate_hz), static_cast(scaled_frame_time_us)); #endif const uint32_t sleep_time = static_cast(scaled_frame_time_us * frame_counter); if (sleep_time > min_sleep_time) { usleep(sleep_time); } last_wall_time_us = now; frame_counter = 0; } } /* add noise based on throttle level (from 0..1) */ void Aircraft::add_noise(float throttle) { gyro += Vector3f(rand_normal(0, 1), rand_normal(0, 1), rand_normal(0, 1)) * gyro_noise * fabsf(throttle); accel_body += Vector3f(rand_normal(0, 1), rand_normal(0, 1), rand_normal(0, 1)) * accel_noise * fabsf(throttle); } /* normal distribution random numbers See http://en.literateprograms.org/index.php?title=Special:DownloadCode/Box-Muller_transform_%28C%29&oldid=7011 */ double Aircraft::rand_normal(double mean, double stddev) { static double n2 = 0.0; static int n2_cached = 0; if (!n2_cached) { double x, y, r; do { x = 2.0 * rand()/RAND_MAX - 1; y = 2.0 * rand()/RAND_MAX - 1; r = x*x + y*y; } while (is_zero(r) || r > 1.0); const double d = sqrt(-2.0 * log(r)/r); const double n1 = x * d; n2 = y * d; const double result = n1 * stddev + mean; n2_cached = 1; return result; } else { n2_cached = 0; return n2 * stddev + mean; } } /* fill a sitl_fdm structure from the simulator state */ void Aircraft::fill_fdm(struct sitl_fdm &fdm) { if (use_smoothing) { smooth_sensors(); } fdm.timestamp_us = time_now_us; if (fdm.home.lat == 0 && fdm.home.lng == 0) { // initialise home fdm.home = home; } fdm.latitude = location.lat * 1.0e-7; fdm.longitude = location.lng * 1.0e-7; fdm.altitude = location.alt * 1.0e-2; fdm.heading = degrees(atan2f(velocity_ef.y, velocity_ef.x)); fdm.speedN = velocity_ef.x; fdm.speedE = velocity_ef.y; fdm.speedD = velocity_ef.z; fdm.xAccel = accel_body.x; fdm.yAccel = accel_body.y; fdm.zAccel = accel_body.z; fdm.rollRate = degrees(gyro.x); fdm.pitchRate = degrees(gyro.y); fdm.yawRate = degrees(gyro.z); fdm.angAccel.x = degrees(ang_accel.x); fdm.angAccel.y = degrees(ang_accel.y); fdm.angAccel.z = degrees(ang_accel.z); float r, p, y; dcm.to_euler(&r, &p, &y); fdm.rollDeg = degrees(r); fdm.pitchDeg = degrees(p); fdm.yawDeg = degrees(y); fdm.quaternion.from_rotation_matrix(dcm); fdm.airspeed = airspeed_pitot; fdm.battery_voltage = battery_voltage; fdm.battery_current = battery_current; fdm.num_motors = num_motors; memcpy(fdm.rpm, rpm, num_motors * sizeof(float)); fdm.rcin_chan_count = rcin_chan_count; fdm.range = range; memcpy(fdm.rcin, rcin, rcin_chan_count * sizeof(float)); fdm.bodyMagField = mag_bf; // copy laser scanner results fdm.scanner.points = scanner.points; fdm.scanner.ranges = scanner.ranges; if (smoothing.enabled) { fdm.xAccel = smoothing.accel_body.x; fdm.yAccel = smoothing.accel_body.y; fdm.zAccel = smoothing.accel_body.z; fdm.rollRate = degrees(smoothing.gyro.x); fdm.pitchRate = degrees(smoothing.gyro.y); fdm.yawRate = degrees(smoothing.gyro.z); fdm.speedN = smoothing.velocity_ef.x; fdm.speedE = smoothing.velocity_ef.y; fdm.speedD = smoothing.velocity_ef.z; fdm.latitude = smoothing.location.lat * 1.0e-7; fdm.longitude = smoothing.location.lng * 1.0e-7; fdm.altitude = smoothing.location.alt * 1.0e-2; } if (ahrs_orientation != nullptr) { enum Rotation imu_rotation = (enum Rotation)ahrs_orientation->get(); if (imu_rotation != last_imu_rotation) { ahrs_rotation_inv.from_rotation(imu_rotation); ahrs_rotation_inv.transpose(); last_imu_rotation = imu_rotation; } if (imu_rotation != ROTATION_NONE) { Matrix3f m = dcm; m = m * ahrs_rotation_inv; m.to_euler(&r, &p, &y); fdm.rollDeg = degrees(r); fdm.pitchDeg = degrees(p); fdm.yawDeg = degrees(y); fdm.quaternion.from_rotation_matrix(m); } } if (!is_equal(last_speedup, float(sitl->speedup)) && sitl->speedup > 0) { set_speedup(sitl->speedup); last_speedup = sitl->speedup; } } uint64_t Aircraft::get_wall_time_us() const { #if defined(__CYGWIN__) || defined(__CYGWIN64__) static DWORD tPrev; static uint64_t last_ret_us; if (tPrev == 0) { tPrev = timeGetTime(); return 0; } DWORD now = timeGetTime(); last_ret_us += (uint64_t)((now - tPrev)*1000UL); tPrev = now; return last_ret_us; #else struct timeval tp; gettimeofday(&tp, nullptr); return static_cast(tp.tv_sec * 1.0e6 + tp.tv_usec); #endif } /* set simulation speedup */ void Aircraft::set_speedup(float speedup) { setup_frame_time(rate_hz, speedup); } void Aircraft::update_model(const struct sitl_input &input) { if (!home_is_set) { if (sitl == nullptr) { return; } Location loc; loc.lat = sitl->opos.lat.get() * 1.0e7; loc.lng = sitl->opos.lng.get() * 1.0e7; loc.alt = sitl->opos.alt.get() * 1.0e2; set_start_location(loc, sitl->opos.hdg.get()); } update(input); } /* update the simulation attitude and relative position */ void Aircraft::update_dynamics(const Vector3f &rot_accel) { const float delta_time = frame_time_us * 1.0e-6f; // update rotational rates in body frame gyro += rot_accel * delta_time; gyro.x = constrain_float(gyro.x, -radians(2000.0f), radians(2000.0f)); gyro.y = constrain_float(gyro.y, -radians(2000.0f), radians(2000.0f)); gyro.z = constrain_float(gyro.z, -radians(2000.0f), radians(2000.0f)); // estimate angular acceleration using a first order difference calculation // TODO the simulator interface should provide the angular acceleration ang_accel = (gyro - gyro_prev) / delta_time; gyro_prev = gyro; // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0.0f, 0.0f, GRAVITY_MSS); // if we're on the ground, then our vertical acceleration is limited // to zero. This effectively adds the force of the ground on the aircraft if (on_ground() && accel_earth.z > 0) { accel_earth.z = 0; } // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0.0f, 0.0f, -GRAVITY_MSS)); // new velocity vector velocity_ef += accel_earth * delta_time; const bool was_on_ground = on_ground(); // new position vector position += velocity_ef * delta_time; // velocity relative to air mass, in earth frame velocity_air_ef = velocity_ef + wind_ef; // velocity relative to airmass in body frame velocity_air_bf = dcm.transposed() * velocity_air_ef; // airspeed airspeed = velocity_air_ef.length(); // airspeed as seen by a fwd pitot tube (limited to 120m/s) airspeed_pitot = constrain_float(velocity_air_bf * Vector3f(1.0f, 0.0f, 0.0f), 0.0f, 120.0f); // constrain height to the ground if (on_ground()) { if (!was_on_ground && AP_HAL::millis() - last_ground_contact_ms > 1000) { gcs().send_text(MAV_SEVERITY_INFO, "SIM Hit ground at %f m/s", velocity_ef.z); last_ground_contact_ms = AP_HAL::millis(); } position.z = -(ground_level + frame_height - home.alt * 0.01f + ground_height_difference()); switch (ground_behavior) { case GROUND_BEHAVIOR_NONE: break; case GROUND_BEHAVIOR_NO_MOVEMENT: { // zero roll/pitch, but keep yaw float r, p, y; dcm.to_euler(&r, &p, &y); dcm.from_euler(0.0f, 0.0f, y); // no X or Y movement velocity_ef.x = 0.0f; velocity_ef.y = 0.0f; if (velocity_ef.z > 0.0f) { velocity_ef.z = 0.0f; } gyro.zero(); use_smoothing = true; break; } case GROUND_BEHAVIOR_FWD_ONLY: { // zero roll/pitch, but keep yaw float r, p, y; dcm.to_euler(&r, &p, &y); if (velocity_ef.length() < 5) { // at high speeds don't constrain pitch, otherwise we // can get stuck in takeoff p = 0; } else { p = MAX(p, 0); } dcm.from_euler(0.0f, p, y); // only fwd movement Vector3f v_bf = dcm.transposed() * velocity_ef; v_bf.y = 0.0f; if (v_bf.x < 0.0f) { v_bf.x = 0.0f; } velocity_ef = dcm * v_bf; if (velocity_ef.z > 0.0f) { velocity_ef.z = 0.0f; } gyro.zero(); use_smoothing = true; break; } case GROUND_BEHAVIOR_TAILSITTER: { // point straight up float r, p, y; dcm.to_euler(&r, &p, &y); dcm.from_euler(0.0f, radians(90), y); // no movement if (accel_earth.z > -1.1*GRAVITY_MSS) { velocity_ef.zero(); } gyro.zero(); use_smoothing = true; break; } } } } /* update wind vector */ void Aircraft::update_wind(const struct sitl_input &input) { // wind vector in earth frame wind_ef = Vector3f(cosf(radians(input.wind.direction))*cosf(radians(input.wind.dir_z)), sinf(radians(input.wind.direction))*cosf(radians(input.wind.dir_z)), sinf(radians(input.wind.dir_z))) * input.wind.speed; wind_ef.z += get_local_updraft(position); const float wind_turb = input.wind.turbulence * 10.0f; // scale input.wind.turbulence to match standard deviation when using iir_coef=0.98 const float iir_coef = 0.98f; // filtering high frequencies from turbulence if (wind_turb > 0 && !on_ground()) { turbulence_azimuth = turbulence_azimuth + (2 * rand()); turbulence_horizontal_speed = static_cast(turbulence_horizontal_speed * iir_coef+wind_turb * rand_normal(0, 1) * (1 - iir_coef)); turbulence_vertical_speed = static_cast((turbulence_vertical_speed * iir_coef) + (wind_turb * rand_normal(0, 1) * (1 - iir_coef))); wind_ef += Vector3f( cosf(radians(turbulence_azimuth)) * turbulence_horizontal_speed, sinf(radians(turbulence_azimuth)) * turbulence_horizontal_speed, turbulence_vertical_speed); } } /* smooth sensors for kinematic consistancy when we interact with the ground */ void Aircraft::smooth_sensors(void) { uint64_t now = time_now_us; Vector3f delta_pos = position - smoothing.position; if (smoothing.last_update_us == 0 || delta_pos.length() > 10) { smoothing.position = position; smoothing.rotation_b2e = dcm; smoothing.accel_body = accel_body; smoothing.velocity_ef = velocity_ef; smoothing.gyro = gyro; smoothing.last_update_us = now; smoothing.location = location; printf("Smoothing reset at %.3f\n", now * 1.0e-6f); return; } const float delta_time = (now - smoothing.last_update_us) * 1.0e-6f; if (delta_time < 0 || delta_time > 0.1) { return; } // calculate required accel to get us to desired position and velocity in the time_constant const float time_constant = 0.1f; Vector3f dvel = (velocity_ef - smoothing.velocity_ef) + (delta_pos / time_constant); Vector3f accel_e = dvel / time_constant + (dcm * accel_body + Vector3f(0.0f, 0.0f, GRAVITY_MSS)); const float accel_limit = 14 * GRAVITY_MSS; accel_e.x = constrain_float(accel_e.x, -accel_limit, accel_limit); accel_e.y = constrain_float(accel_e.y, -accel_limit, accel_limit); accel_e.z = constrain_float(accel_e.z, -accel_limit, accel_limit); smoothing.accel_body = smoothing.rotation_b2e.transposed() * (accel_e + Vector3f(0.0f, 0.0f, -GRAVITY_MSS)); // calculate rotational rate to get us to desired attitude in time constant Quaternion desired_q, current_q, error_q; desired_q.from_rotation_matrix(dcm); desired_q.normalize(); current_q.from_rotation_matrix(smoothing.rotation_b2e); current_q.normalize(); error_q = desired_q / current_q; error_q.normalize(); Vector3f angle_differential; error_q.to_axis_angle(angle_differential); smoothing.gyro = gyro + angle_differential / time_constant; float R, P, Y; smoothing.rotation_b2e.to_euler(&R, &P, &Y); float R2, P2, Y2; dcm.to_euler(&R2, &P2, &Y2); #if 0 // @LoggerMessage: SMOO // @Description: Smoothed sensor data fed to EKF to avoid inconsistencies // @Field: TimeUS: Time since system startup // @Field: AEx: Angular Velocity (around x-axis) // @Field: AEy: Angular Velocity (around y-axis) // @Field: AEz: Angular Velocity (around z-axis) // @Field: DPx: Velocity (along x-axis) // @Field: DPy: Velocity (along y-axis) // @Field: DPz: Velocity (along z-axis) // @Field: R: Roll // @Field: P: Pitch // @Field: Y: Yaw // @Field: R2: DCM Roll // @Field: P2: DCM Pitch // @Field: Y2: DCM Yaw AP::logger().Write("SMOO", "TimeUS,AEx,AEy,AEz,DPx,DPy,DPz,R,P,Y,R2,P2,Y2", "Qffffffffffff", AP_HAL::micros64(), degrees(angle_differential.x), degrees(angle_differential.y), degrees(angle_differential.z), delta_pos.x, delta_pos.y, delta_pos.z, degrees(R), degrees(P), degrees(Y), degrees(R2), degrees(P2), degrees(Y2)); #endif // integrate to get new attitude smoothing.rotation_b2e.rotate(smoothing.gyro * delta_time); smoothing.rotation_b2e.normalize(); // integrate to get new position smoothing.velocity_ef += accel_e * delta_time; smoothing.position += smoothing.velocity_ef * delta_time; smoothing.location = home; smoothing.location.offset(smoothing.position.x, smoothing.position.y); smoothing.location.alt = static_cast(home.alt - smoothing.position.z * 100.0f); smoothing.last_update_us = now; smoothing.enabled = true; } /* return a filtered servo input as a value from -1 to 1 servo is assumed to be 1000 to 2000, trim at 1500 */ float Aircraft::filtered_idx(float v, uint8_t idx) { if (sitl->servo_speed <= 0) { return v; } const float cutoff = 1.0f / (2 * M_PI * sitl->servo_speed); servo_filter[idx].set_cutoff_frequency(cutoff); return servo_filter[idx].apply(v, frame_time_us * 1.0e-6f); } /* return a filtered servo input as a value from -1 to 1 servo is assumed to be 1000 to 2000, trim at 1500 */ float Aircraft::filtered_servo_angle(const struct sitl_input &input, uint8_t idx) { const float v = (input.servos[idx] - 1500)/500.0f; return filtered_idx(v, idx); } /* return a filtered servo input as a value from 0 to 1 servo is assumed to be 1000 to 2000 */ float Aircraft::filtered_servo_range(const struct sitl_input &input, uint8_t idx) { const float v = (input.servos[idx] - 1000)/1000.0f; return filtered_idx(v, idx); } // extrapolate sensors by a given delta time in seconds void Aircraft::extrapolate_sensors(float delta_time) { Vector3f accel_earth = dcm * accel_body; accel_earth.z += GRAVITY_MSS; dcm.rotate(gyro * delta_time); dcm.normalize(); // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0,0,-GRAVITY_MSS)); // new velocity and position vectors velocity_ef += accel_earth * delta_time; position += velocity_ef * delta_time; velocity_air_ef = velocity_ef + wind_ef; velocity_air_bf = dcm.transposed() * velocity_air_ef; } void Aircraft::update_external_payload(const struct sitl_input &input) { external_payload_mass = 0; // update sprayer if (sprayer && sprayer->is_enabled()) { sprayer->update(input); external_payload_mass += sprayer->payload_mass(); } // update buzzer if (buzzer && buzzer->is_enabled()) { buzzer->update(input); } // update grippers if (gripper && gripper->is_enabled()) { gripper->set_alt(hagl()); gripper->update(input); external_payload_mass += gripper->payload_mass(); } if (gripper_epm && gripper_epm->is_enabled()) { gripper_epm->update(input); external_payload_mass += gripper_epm->payload_mass(); } // update parachute if (parachute && parachute->is_enabled()) { parachute->update(input); // TODO: add drag to vehicle, presumably proportional to velocity } if (precland && precland->is_enabled()) { precland->update(get_location(), get_position()); } } void Aircraft::add_shove_forces(Vector3f &rot_accel, Vector3f &body_accel) { const uint32_t now = AP_HAL::millis(); if (sitl == nullptr) { return; } if (sitl->shove.t == 0) { return; } if (sitl->shove.start_ms == 0) { sitl->shove.start_ms = now; } if (now - sitl->shove.start_ms < uint32_t(sitl->shove.t)) { // FIXME: can we get a vector operation here instead? body_accel.x += sitl->shove.x; body_accel.y += sitl->shove.y; body_accel.z += sitl->shove.z; } else { sitl->shove.start_ms = 0; sitl->shove.t = 0; } } float Aircraft::get_local_updraft(Vector3f currentPos) { int scenario = sitl->thermal_scenario; #define MAX_THERMALS 10 float thermals_w[MAX_THERMALS]; float thermals_r[MAX_THERMALS]; float thermals_x[MAX_THERMALS]; float thermals_y[MAX_THERMALS]; int n_thermals = 0; switch (scenario) { case 1: n_thermals = 1; thermals_w[0] = 2.0; thermals_r[0] = 80.0; thermals_x[0] = -180.0; thermals_y[0] = -260.0; break; case 2: n_thermals = 1; thermals_w[0] = 4.0; thermals_r[0] = 30.0; thermals_x[0] = -180.0; thermals_y[0] = -260.0; break; case 3: n_thermals = 1; thermals_w[0] = 2.0; thermals_r[0] = 30.0; thermals_x[0] = -180.0; thermals_y[0] = -260.0; break; } // Wind drift at this altitude float driftX = sitl->wind_speed * (currentPos.z+100) * cosf(sitl->wind_direction * DEG_TO_RAD); float driftY = sitl->wind_speed * (currentPos.z+100) * sinf(sitl->wind_direction * DEG_TO_RAD); int iThermal; float w = 0.0f; float r2; for (iThermal=0;iThermalgnd_behav != -1) { ground_behavior = (GroundBehaviour)sitl->gnd_behav.get(); } const uint32_t now = AP_HAL::millis(); if (sitl == nullptr) { return; } if (sitl->twist.t == 0) { return; } if (sitl->twist.start_ms == 0) { sitl->twist.start_ms = now; } if (now - sitl->twist.start_ms < uint32_t(sitl->twist.t)) { // FIXME: can we get a vector operation here instead? rot_accel.x += sitl->twist.x; rot_accel.y += sitl->twist.y; rot_accel.z += sitl->twist.z; } else { sitl->twist.start_ms = 0; sitl->twist.t = 0; } }