#include "Copter.h" #include "mode.h" #if MODE_ACRO_ENABLED /* * Init and run calls for acro flight mode */ void ModeAcro::run() { // convert the input to the desired body frame rate float target_roll, target_pitch, target_yaw; get_pilot_desired_angle_rates(channel_roll->norm_input_dz(), channel_pitch->norm_input_dz(), channel_yaw->norm_input_dz(), target_roll, target_pitch, target_yaw); if (!motors->armed()) { // Motors should be Stopped motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); } else if (copter.ap.throttle_zero || (copter.air_mode == AirMode::AIRMODE_ENABLED && motors->get_spool_state() == AP_Motors::SpoolState::SHUT_DOWN)) { // throttle_zero is never true in air mode, but the motors should be allowed to go through ground idle // in order to facilitate the spoolup block // Attempting to Land or motors not yet spinning // if airmode is enabled only an actual landing will spool down the motors motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); } else { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); } float pilot_desired_throttle = get_pilot_desired_throttle(); switch (motors->get_spool_state()) { case AP_Motors::SpoolState::SHUT_DOWN: // Motors Stopped attitude_control->reset_target_and_rate(true); attitude_control->reset_rate_controller_I_terms(); pilot_desired_throttle = 0.0f; break; case AP_Motors::SpoolState::GROUND_IDLE: // Landed attitude_control->reset_target_and_rate(); attitude_control->reset_rate_controller_I_terms_smoothly(); pilot_desired_throttle = 0.0f; break; case AP_Motors::SpoolState::THROTTLE_UNLIMITED: // clear landing flag above zero throttle if (!motors->limit.throttle_lower) { set_land_complete(false); } break; case AP_Motors::SpoolState::SPOOLING_UP: case AP_Motors::SpoolState::SPOOLING_DOWN: // do nothing break; } // run attitude controller if (g2.acro_options.get() & uint8_t(AcroOptions::RATE_LOOP_ONLY)) { attitude_control->input_rate_bf_roll_pitch_yaw_2(target_roll, target_pitch, target_yaw); } else { attitude_control->input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw); } // output pilot's throttle without angle boost attitude_control->set_throttle_out(pilot_desired_throttle, false, copter.g.throttle_filt); } bool ModeAcro::init(bool ignore_checks) { if (g2.acro_options.get() & uint8_t(AcroOptions::AIR_MODE)) { disable_air_mode_reset = false; copter.air_mode = AirMode::AIRMODE_ENABLED; } return true; } void ModeAcro::exit() { if (!disable_air_mode_reset && (g2.acro_options.get() & uint8_t(AcroOptions::AIR_MODE))) { copter.air_mode = AirMode::AIRMODE_DISABLED; } disable_air_mode_reset = false; } void ModeAcro::air_mode_aux_changed() { disable_air_mode_reset = true; } float ModeAcro::throttle_hover() const { if (g2.acro_thr_mid > 0) { return g2.acro_thr_mid; } return Mode::throttle_hover(); } // get_pilot_desired_angle_rates - transform pilot's normalised roll pitch and yaw input into a desired lean angle rates // inputs are -1 to 1 and the function returns desired angle rates in centi-degrees-per-second void ModeAcro::get_pilot_desired_angle_rates(float roll_in, float pitch_in, float yaw_in, float &roll_out, float &pitch_out, float &yaw_out) { float rate_limit; Vector3f rate_ef_level_cd, rate_bf_level_cd, rate_bf_request_cd; // apply circular limit to pitch and roll inputs float total_in = norm(pitch_in, roll_in); if (total_in > 1.0) { float ratio = 1.0 / total_in; roll_in *= ratio; pitch_in *= ratio; } // calculate roll, pitch rate requests // roll expo rate_bf_request_cd.x = g2.command_model_acro_rp.get_rate() * 100.0 * input_expo(roll_in, g2.command_model_acro_rp.get_expo()); // pitch expo rate_bf_request_cd.y = g2.command_model_acro_rp.get_rate() * 100.0 * input_expo(pitch_in, g2.command_model_acro_rp.get_expo()); // yaw expo rate_bf_request_cd.z = g2.command_model_acro_y.get_rate() * 100.0 * input_expo(yaw_in, g2.command_model_acro_y.get_expo()); // calculate earth frame rate corrections to pull the copter back to level while in ACRO mode if (g.acro_trainer != (uint8_t)Trainer::OFF) { // get attitude targets const Vector3f att_target = attitude_control->get_att_target_euler_cd(); // Calculate trainer mode earth frame rate command for roll int32_t roll_angle = wrap_180_cd(att_target.x); rate_ef_level_cd.x = -constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll; // Calculate trainer mode earth frame rate command for pitch int32_t pitch_angle = wrap_180_cd(att_target.y); rate_ef_level_cd.y = -constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch; // Calculate trainer mode earth frame rate command for yaw rate_ef_level_cd.z = 0; // Calculate angle limiting earth frame rate commands if (g.acro_trainer == (uint8_t)Trainer::LIMITED) { const float angle_max = copter.aparm.angle_max; if (roll_angle > angle_max){ rate_ef_level_cd.x += sqrt_controller(angle_max - roll_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_roll_max_cdss(), G_Dt); }else if (roll_angle < -angle_max) { rate_ef_level_cd.x += sqrt_controller(-angle_max - roll_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_roll_max_cdss(), G_Dt); } if (pitch_angle > angle_max){ rate_ef_level_cd.y += sqrt_controller(angle_max - pitch_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_pitch_max_cdss(), G_Dt); }else if (pitch_angle < -angle_max) { rate_ef_level_cd.y += sqrt_controller(-angle_max - pitch_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_pitch_max_cdss(), G_Dt); } } // convert earth-frame level rates to body-frame level rates attitude_control->euler_rate_to_ang_vel(attitude_control->get_attitude_target_quat(), rate_ef_level_cd, rate_bf_level_cd); // combine earth frame rate corrections with rate requests if (g.acro_trainer == (uint8_t)Trainer::LIMITED) { rate_bf_request_cd.x += rate_bf_level_cd.x; rate_bf_request_cd.y += rate_bf_level_cd.y; rate_bf_request_cd.z += rate_bf_level_cd.z; }else{ float acro_level_mix = constrain_float(1-float(MAX(MAX(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0), 0, 1)*ahrs.cos_pitch(); // Scale levelling rates by stick input rate_bf_level_cd = rate_bf_level_cd * acro_level_mix; // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request_cd.x)-fabsf(rate_bf_level_cd.x)); rate_bf_request_cd.x += rate_bf_level_cd.x; rate_bf_request_cd.x = constrain_float(rate_bf_request_cd.x, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request_cd.y)-fabsf(rate_bf_level_cd.y)); rate_bf_request_cd.y += rate_bf_level_cd.y; rate_bf_request_cd.y = constrain_float(rate_bf_request_cd.y, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request_cd.z)-fabsf(rate_bf_level_cd.z)); rate_bf_request_cd.z += rate_bf_level_cd.z; rate_bf_request_cd.z = constrain_float(rate_bf_request_cd.z, -rate_limit, rate_limit); } } // hand back rate request roll_out = rate_bf_request_cd.x; pitch_out = rate_bf_request_cd.y; yaw_out = rate_bf_request_cd.z; } #endif