/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
//
// Copyright (c) 2010 Michael Smith. All rights reserved.
//
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "UARTDriver.h"
#include "SITL_State.h"
#if HAL_GCS_ENABLED
#include
#endif
#include
#include
#include
extern const AP_HAL::HAL& hal;
using namespace HALSITL;
bool UARTDriver::_console;
/* UARTDriver method implementations */
void UARTDriver::_begin(uint32_t baud, uint16_t rxSpace, uint16_t txSpace)
{
if (baud == 0 && rxSpace == 0 && txSpace == 0) {
// this is a claim of the uart for the current thread, which
// is currently not implemented in SITL
return;
}
if (_portNumber >= ARRAY_SIZE(_sitlState->_serial_path)) {
AP_HAL::panic("port number out of range; you may need to extend _sitlState->_serial_path");
}
const char *path = _sitlState->_serial_path[_portNumber];
if (baud != 0) {
_uart_baudrate = baud;
}
if (strcmp(path, "GPS1") == 0) {
/* gps */
_connected = true;
_sim_serial_device = _sitlState->create_serial_sim("gps:1", "");
} else if (strcmp(path, "GPS2") == 0) {
/* 2nd gps */
_connected = true;
_sim_serial_device = _sitlState->create_serial_sim("gps:2", "");
} else {
/* parse type:args:flags string for path.
For example:
tcp:5760:wait // tcp listen on port 5760
tcp:0:wait // tcp listen on use base_port + 0
tcpclient:192.168.2.15:5762
udpclient:127.0.0.1
udpclient:127.0.0.1:14550
mcast:
mcast:239.255.145.50:14550
uart:/dev/ttyUSB0:57600
sim:ParticleSensor_SDS021:
file:/tmp/my-device-capture.BIN
logic_async_csv:/tmp/logic_async.csv:
*/
char *saveptr = nullptr;
char *s = strdup(path);
char *devtype = strtok_r(s, ":", &saveptr);
char *args1 = strtok_r(nullptr, ":", &saveptr);
char *args2 = strtok_r(nullptr, ":", &saveptr);
#if APM_BUILD_COPTER_OR_HELI || APM_BUILD_TYPE(APM_BUILD_ArduPlane)
if (_portNumber == 1 && AP::sitl()->adsb_plane_count >= 0) {
// this is ordinarily port 5762. The ADSB simulation assumed
// this port, so if enabled we assume we'll be doing ADSB...
// add sanity check here that we're doing mavlink on this port?
::printf("SIM-ADSB connection on SERIAL%u\n", _portNumber);
_connected = true;
_sim_serial_device = _sitlState->create_serial_sim("adsb", nullptr);
} else
#endif
if (strcmp(devtype, "tcp") == 0) {
uint16_t port = atoi(args1);
bool wait = (args2 && strcmp(args2, "wait") == 0);
_tcp_start_connection(port, wait);
} else if (strcmp(devtype, "tcpclient") == 0) {
if (args2 == nullptr) {
AP_HAL::panic("Invalid tcp client path: %s", path);
}
uint16_t port = atoi(args2);
_tcp_start_client(args1, port);
} else if (strcmp(devtype, "uart") == 0) {
uint32_t baudrate = args2? atoi(args2) : baud;
::printf("UART connection %s:%u\n", args1, baudrate);
_uart_path = strdup(args1);
_uart_baudrate = baudrate;
_uart_start_connection();
} else if (strcmp(devtype, "sim") == 0) {
if (!_connected) {
::printf("SIM connection %s:%s on SERIAL%u\n", args1, args2, _portNumber);
_connected = true;
_sim_serial_device = _sitlState->create_serial_sim(args1, args2);
}
} else if (strcmp(devtype, "udpclient") == 0) {
// udp client connection
const char *ip = args1;
uint16_t port = args2?atoi(args2):14550;
if (!_connected) {
::printf("UDP connection %s:%u\n", ip, port);
_udp_start_client(ip, port);
}
} else if (strcmp(devtype, "mcast") == 0) {
// udp multicast connection
const char *ip = args1 && *args1?args1:mcast_ip_default;
uint16_t port = args2?atoi(args2):mcast_port_default;
if (!_connected) {
::printf("UDP multicast connection %s:%u\n", ip, port);
_udp_start_multicast(ip, port);
}
} else if (strcmp(devtype,"none") == 0) {
// skipping port
::printf("Skipping port %s\n", args1);
} else if (strcmp(devtype, "file") == 0) {
if (_connected) {
AP::FS().close(_fd);
}
::printf("FILE connection %s\n", args1);
_fd = AP::FS().open(args1, O_RDONLY);
if (_fd == -1) {
AP_HAL::panic("Failed to open (%s): %m", args1);
}
_connected = true;
} else if (strcmp(devtype, "outfile") == 0) {
if (_connected) {
AP::FS().close(_fd);
}
::printf("FILE output connection %s\n", args1);
_fd = AP::FS().open(args1, O_WRONLY|O_CREAT|O_TRUNC, 0644);
if (_fd == -1) {
AP_HAL::panic("Failed to open (%s): %m", args1);
}
_connected = true;
} else if (strcmp(devtype, "logic_async_csv") == 0) {
if (_connected) {
AP::FS().close(_fd);
}
::printf("logic_async_csv connection %s\n", args1);
_fd = AP::FS().open(args1, O_RDONLY);
if (_fd == -1) {
AP_HAL::panic("Failed to open (%s): %m", args1);
}
_connected = true;
logic_async_csv.active = true;
} else {
AP_HAL::panic("Invalid device path: %s", path);
}
free(s);
}
if (_sim_serial_device != nullptr) {
_sim_serial_device->set_autopilot_baud(baud);
}
if (hal.console != this) { // don't clear USB buffers (allows early startup messages to escape)
_readbuffer.clear();
_writebuffer.clear();
}
_set_nonblocking(_fd);
}
void UARTDriver::_end()
{
}
uint32_t UARTDriver::_available(void)
{
_check_connection();
if (!_connected) {
return 0;
}
return _readbuffer.available();
}
uint32_t UARTDriver::txspace(void)
{
_check_connection();
if (!_connected) {
return 0;
}
return _writebuffer.space();
}
ssize_t UARTDriver::_read(uint8_t *buffer, uint16_t count)
{
const ssize_t ret = _readbuffer.read(buffer, count);
_rx_stats_bytes += ret;
return ret;
}
bool UARTDriver::_discard_input(void)
{
_readbuffer.clear();
return true;
}
void UARTDriver::_flush(void)
{
// flush the write buffer - but don't fail and don't
// infinitely-loop. This is not a good definition of "flush", but
// it was judged that we had to return from this function even if
// we hadn't actually done our job.
uint32_t start_ms = AP_HAL::millis();
while (AP_HAL::millis() - start_ms < 1000) {
if (_writebuffer.available() == 0) {
break;
}
_timer_tick();
}
// ensure that the outbound TCP queue is also empty...
start_ms = AP_HAL::millis();
while (AP_HAL::millis() - start_ms < 1000) {
if (((HALSITL::UARTDriver*)hal.serial(0))->get_system_outqueue_length() == 0) {
break;
}
usleep(1000);
}
}
size_t UARTDriver::_write(const uint8_t *buffer, size_t size)
{
const auto _txspace = txspace();
if (_txspace < size) {
size = _txspace;
}
if (size <= 0) {
return 0;
}
/*
simulate byte loss at the link layer
*/
uint8_t lost_byte = 0;
#if !defined(HAL_BUILD_AP_PERIPH)
SITL::SIM *_sitl = AP::sitl();
if (_sitl && _sitl->uart_byte_loss_pct > 0) {
if (fabsf(rand_float()) < _sitl->uart_byte_loss_pct.get() * 0.01 * size) {
lost_byte = 1;
}
}
#endif // HAL_BUILD_AP_PERIPH
// Include lost byte in tx count, we think we sent it even though it was never added to the write buffer
_tx_stats_bytes += lost_byte;
const size_t ret = _writebuffer.write(buffer, size - lost_byte) + lost_byte;
if (_unbuffered_writes) {
handle_writing_from_writebuffer_to_device();
}
return ret;
}
/*
start a TCP connection for the serial port. If wait_for_connection
is true then block until a client connects
*/
void UARTDriver::_tcp_start_connection(uint16_t port, bool wait_for_connection)
{
int one=1;
int ret;
struct sockaddr_in _listen_sockaddr {};
if (_connected) {
return;
}
_use_send_recv = true;
if (_console) {
// hack for console access
_connected = true;
_use_send_recv = false;
_listen_fd = -1;
_fd = 1;
return;
}
if (_fd != -1) {
close(_fd);
}
if (_listen_fd == -1) {
memset(&_listen_sockaddr,0,sizeof(_listen_sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
_listen_sockaddr.sin_len = sizeof(_listen_sockaddr);
#endif
if (port > 1000) {
_listen_sockaddr.sin_port = htons(port);
} else {
_listen_sockaddr.sin_port = htons(_sitlState->base_port() + port);
}
_listen_sockaddr.sin_family = AF_INET;
_listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (_listen_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
ret = fcntl(_listen_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
if (setsockopt(_listen_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) {
fprintf(stderr, "setsockopt failed: %s\n", strerror(errno));
exit(1);
}
fprintf(stderr, "bind port %u for SERIAL%u\n",
(unsigned)ntohs(_listen_sockaddr.sin_port),
(unsigned)_portNumber);
ret = bind(_listen_fd, (struct sockaddr *)&_listen_sockaddr, sizeof(_listen_sockaddr));
if (ret == -1) {
fprintf(stderr, "bind failed on port %u - %s\n",
(unsigned)ntohs(_listen_sockaddr.sin_port),
strerror(errno));
exit(1);
}
ret = listen(_listen_fd, 5);
if (ret == -1) {
fprintf(stderr, "listen failed - %s\n", strerror(errno));
exit(1);
}
fprintf(stderr, "SERIAL%u on TCP port %u\n", _portNumber,
(unsigned)ntohs(_listen_sockaddr.sin_port));
fflush(stdout);
}
if (wait_for_connection) {
fprintf(stdout, "Waiting for connection ....\n");
fflush(stdout);
_fd = accept(_listen_fd, nullptr, nullptr);
if (_fd == -1) {
fprintf(stderr, "accept() error - %s", strerror(errno));
exit(1);
}
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));
fcntl(_fd, F_SETFD, FD_CLOEXEC);
_connected = true;
fprintf(stdout, "Connection on serial port %u\n", (unsigned)ntohs(_listen_sockaddr.sin_port));
}
}
/*
start a TCP client connection for the serial port.
*/
void UARTDriver::_tcp_start_client(const char *address, uint16_t port)
{
int one=1;
struct sockaddr_in sockaddr;
int ret;
if (_connected) {
return;
}
_use_send_recv = true;
if (_fd != -1) {
close(_fd);
}
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(port);
sockaddr.sin_family = AF_INET;
sockaddr.sin_addr.s_addr = inet_addr(address);
_fd = socket(AF_INET, SOCK_STREAM, 0);
if (_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
ret = fcntl(_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
ret = connect(_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "connect failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));
fcntl(_fd, F_SETFD, FD_CLOEXEC);
_connected = true;
}
/*
start a UDP client connection for the serial port.
*/
void UARTDriver::_udp_start_client(const char *address, uint16_t port)
{
struct sockaddr_in sockaddr;
int ret;
if (_connected) {
return;
}
_use_send_recv = true;
if (_fd != -1) {
close(_fd);
}
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(port);
sockaddr.sin_family = AF_INET;
sockaddr.sin_addr.s_addr = inet_addr(address);
_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
ret = fcntl(_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
// try to setup for broadcast, this may fail if insufficient privileges
int one = 1;
setsockopt(_fd,SOL_SOCKET,SO_BROADCAST,(char *)&one,sizeof(one));
ret = connect(_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "udp connect failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
_is_udp = true;
#if HAL_GCS_ENABLED
_packetise = true;
#endif
_connected = true;
}
/*
start a UDP multicast connection
*/
void UARTDriver::_udp_start_multicast(const char *address, uint16_t port)
{
if (_connected) {
return;
}
// establish the listening port
struct sockaddr_in sockaddr;
int ret;
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(port);
sockaddr.sin_family = AF_INET;
sockaddr.sin_addr.s_addr = inet_addr(address);
_mc_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (_mc_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
ret = fcntl(_mc_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
int one = 1;
if (setsockopt(_mc_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) {
fprintf(stderr, "setsockopt failed: %s\n", strerror(errno));
exit(1);
}
// close on exec, to allow reboot
fcntl(_mc_fd, F_SETFD, FD_CLOEXEC);
#if defined(__CYGWIN__) || defined(__CYGWIN64__) || defined(CYGWIN_BUILD)
/*
on cygwin you need to bind to INADDR_ANY then use the multicast
IP_ADD_MEMBERSHIP to get on the right address
*/
sockaddr.sin_addr.s_addr = htonl(INADDR_ANY);
#endif
ret = bind(_mc_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "multicast bind failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
struct ip_mreq mreq {};
mreq.imr_multiaddr.s_addr = inet_addr(address);
mreq.imr_interface.s_addr = htonl(INADDR_ANY);
ret = setsockopt(_mc_fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
if (ret == -1) {
fprintf(stderr, "multicast membership add failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
// now start the outgoing connection as an ordinary UDP connection
_udp_start_client(address, port);
}
/*
start a UART connection for the serial port
*/
void UARTDriver::_uart_start_connection(void)
{
struct termios t {};
if (!_connected) {
_fd = ::open(_uart_path, O_RDWR | O_CLOEXEC);
if (_fd == -1) {
static uint32_t last_error_print_ms;
if (AP_HAL::millis() - last_error_print_ms > 5000) {
::printf("Failed to open (%s): %s\n", _uart_path, strerror(errno));
last_error_print_ms = AP_HAL::millis();
}
return;
}
// use much smaller buffer sizes on real UARTs
_writebuffer.set_size(1024);
_readbuffer.set_size(512);
::printf("Opened %s\n", _uart_path);
}
if (_fd == -1) {
AP_HAL::panic("Unable to open UART %s", _uart_path);
}
// set non-blocking
int flags = fcntl(_fd, F_GETFL, 0);
flags = flags | O_NONBLOCK;
fcntl(_fd, F_SETFL, flags);
// disable LF -> CR/LF
tcgetattr(_fd, &t);
t.c_iflag &= ~(BRKINT | ICRNL | IMAXBEL | IXON | IXOFF);
t.c_oflag &= ~(OPOST | ONLCR);
t.c_lflag &= ~(ISIG | ICANON | IEXTEN | ECHO | ECHOE | ECHOK | ECHOCTL | ECHOKE);
t.c_cc[VMIN] = 0;
if (_sitlState->use_rtscts()) {
t.c_cflag |= CRTSCTS;
}
tcsetattr(_fd, TCSANOW, &t);
// set baudrate
if (_uart_baudrate != 0) {
set_speed(_uart_baudrate);
}
_connected = true;
_use_send_recv = false;
}
/*
see if a new connection is coming in
*/
void UARTDriver::_check_connection(void)
{
if (_connected) {
// we only want 1 connection at a time
return;
}
if (_select_check(_listen_fd)) {
_fd = accept(_listen_fd, nullptr, nullptr);
if (_fd != -1) {
int one = 1;
_connected = true;
setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));
setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
fcntl(_fd, F_SETFD, FD_CLOEXEC);
fprintf(stdout, "New connection on SERIAL%u\n", _portNumber);
}
}
}
/*
use select() to see if something is pending
*/
bool UARTDriver::_select_check(int fd)
{
if (fd == -1) {
return false;
}
#if !APM_BUILD_TYPE(APM_BUILD_Replay)
fd_set fds;
struct timeval tv;
FD_ZERO(&fds);
FD_SET(fd, &fds);
// zero time means immediate return from select()
tv.tv_sec = 0;
tv.tv_usec = 0;
if (select(fd+1, &fds, nullptr, nullptr, &tv) == 1) {
return true;
}
#endif
return false;
}
void UARTDriver::_set_nonblocking(int fd)
{
unsigned v = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, v | O_NONBLOCK);
}
bool UARTDriver::set_unbuffered_writes(bool on) {
if (_fd == -1) {
return false;
}
_unbuffered_writes = on;
// this has no effect
unsigned v = fcntl(_fd, F_GETFL, 0);
v &= ~O_NONBLOCK;
#if defined(__APPLE__) && defined(__MACH__)
fcntl(_fd, F_SETFL | F_NOCACHE, v | O_SYNC);
#else
fcntl(_fd, F_SETFL, v | O_DIRECT | O_SYNC);
#endif
return _unbuffered_writes;
}
void UARTDriver::_check_reconnect(void)
{
if (!_uart_path) {
return;
}
_uart_start_connection();
}
uint16_t UARTDriver::read_from_async_csv(uint8_t *buffer, uint16_t space)
{
if (_fd == -1) {
return 0;
}
const uint32_t micros = AP_HAL::micros();
if (micros < 5000000) {
// don't inject for the first several seconds
return 0;
}
uint8_t i;
for (i=0; i emit_timestamp_us) {
return i;
}
buffer[i] = logic_async_csv.loaded_data.b;
logic_async_csv.loaded = false;
}
while (!logic_async_csv.loaded) {
uint8_t c;
const ssize_t nread = ::read(_fd, &c, 1);
if (nread == 0) {
// EOF
close(_fd);
_fd = -1;
return i;
}
// feed data into CSV Reader, handle new state:
const auto retcode = logic_async_csv.csvreader.feed(c);
switch (retcode) {
case AP_CSVReader::RetCode::OK:
continue;
case AP_CSVReader::RetCode::ERROR:
AP_HAL::panic("Malformed CSV?");
case AP_CSVReader::RetCode::TERM_DONE:
case AP_CSVReader::RetCode::VECTOR_DONE:
switch (logic_async_csv.terms_seen) {
case 0: // start_time
if (!logic_async_csv.done_first_line) {
break;
}
logic_async_csv.loaded_data.timestamp_us = atof((char*)logic_async_csv.term) * 1000000; // seconds to microseconds
break;
case 1: // data
if (!logic_async_csv.done_first_line) {
break;
}
logic_async_csv.loaded_data.b = (char_to_hex(logic_async_csv.term[2]) << 4) | char_to_hex(logic_async_csv.term[3]);
break;
case 2: // error
case 3: // framing error
break;
case 4:
AP_HAL::panic("Too many terms in CSV, want (name,type,start_time,duration,data");
}
logic_async_csv.terms_seen++;
if (retcode != AP_CSVReader::RetCode::VECTOR_DONE) {
break;
}
// we've handled the last term, now handle the vector:
if (logic_async_csv.terms_seen != 4) {
AP_HAL::panic("Incorrect number off terms in CSV, want (Time [s],Value,Parity Error,Framing Error)");
}
logic_async_csv.terms_seen = 0;
if (!logic_async_csv.done_first_line) {
// skip the headers
logic_async_csv.done_first_line = true;
break;
}
if (logic_async_csv.first_timestamp_us == 0) {
logic_async_csv.first_timestamp_us = logic_async_csv.loaded_data.timestamp_us;
logic_async_csv.first_emit_micros_us = micros;
}
logic_async_csv.loaded = true;
}
}
}
return i;
}
void UARTDriver::handle_writing_from_writebuffer_to_device()
{
WITH_SEMAPHORE(write_mtx);
if (!_connected) {
_check_reconnect();
return;
}
ssize_t nwritten;
uint32_t max_bytes = 10000;
#if !defined(HAL_BUILD_AP_PERIPH)
SITL::SIM *_sitl = AP::sitl();
if (_sitl && _sitl->telem_baudlimit_enable) {
// limit byte rate to configured baudrate
uint32_t now = AP_HAL::micros();
float dt = 1.0e-6 * (now - last_write_tick_us);
max_bytes = _uart_baudrate * dt / 10;
if (max_bytes == 0) {
return;
}
last_write_tick_us = now;
}
#endif
if (_packetise) {
uint16_t n = _writebuffer.available();
n = MIN(n, max_bytes);
#if HAL_GCS_ENABLED
if (n > 0) {
n = mavlink_packetise(_writebuffer, n);
}
#endif
if (n > 0) {
// keep as a single UDP packet
uint8_t tmpbuf[n];
_writebuffer.peekbytes(tmpbuf, n);
ssize_t ret = send(_fd, tmpbuf, n, MSG_DONTWAIT);
if (ret > 0) {
_writebuffer.advance(ret);
_tx_stats_bytes += ret;
}
}
} else {
uint32_t navail;
const uint8_t *readptr = _writebuffer.readptr(navail);
if (readptr && navail > 0) {
navail = MIN(navail, max_bytes);
if (_sim_serial_device != nullptr) {
nwritten = _sim_serial_device->write_to_device((const char*)readptr, navail);
} else if (!_use_send_recv) {
nwritten = ::write(_fd, readptr, navail);
if (nwritten == -1 && errno != EAGAIN && _uart_path) {
close(_fd);
_fd = -1;
_connected = false;
}
} else {
nwritten = send(_fd, readptr, navail, MSG_DONTWAIT);
}
if (nwritten > 0) {
_writebuffer.advance(nwritten);
_tx_stats_bytes += nwritten;
}
}
}
}
void UARTDriver::handle_reading_from_device_to_readbuffer()
{
if (!_connected) {
_check_reconnect();
return;
}
uint32_t space = _readbuffer.space();
if (space == 0) {
return;
}
uint32_t max_bytes = 10000;
#if !defined(HAL_BUILD_AP_PERIPH)
SITL::SIM *_sitl = AP::sitl();
if (_sitl && _sitl->telem_baudlimit_enable) {
// limit byte rate to configured baudrate
uint32_t now = AP_HAL::micros();
float dt = 1.0e-6 * (now - last_read_tick_us);
max_bytes = _uart_baudrate * dt / 10;
if (max_bytes == 0) {
return;
}
last_read_tick_us = now;
}
#endif
space = MIN(space, max_bytes);
char buf[space];
ssize_t nread = 0;
if (_mc_fd >= 0) {
if (_select_check(_mc_fd)) {
struct sockaddr_in from;
socklen_t fromlen = sizeof(from);
nread = recvfrom(_mc_fd, buf, space, MSG_DONTWAIT, (struct sockaddr *)&from, &fromlen);
uint16_t port = ntohs(from.sin_port);
if (_mc_myport == 0) {
// get our own address, so we can recognise packets from ourself
struct sockaddr_in myaddr;
socklen_t myaddrlen;
if (getsockname(_fd, (struct sockaddr *)&myaddr, &myaddrlen) == 0) {
_mc_myport = ntohs(myaddr.sin_port);
}
}
if (_mc_myport == port) {
// assume this is a packet from ourselves. This is not
// entirely accurate, as it could be a packet from
// another machine that has assigned the same port,
// unfortunately we don't have a better way to detect
// packets from ourselves
nread = 0;
}
}
} else if (_sim_serial_device != nullptr) {
nread = _sim_serial_device->read_from_device(buf, space);
} else if (logic_async_csv.active) {
nread = read_from_async_csv((uint8_t*)buf, space);
} else if (!_use_send_recv) {
if (!_select_check(_fd)) {
return;
}
int fd = _console?0:_fd;
nread = ::read(fd, buf, space);
if (nread == -1 && errno != EAGAIN && _uart_path) {
close(_fd);
_fd = -1;
_connected = false;
}
} else if (_select_check(_fd)) {
nread = recv(_fd, buf, space, MSG_DONTWAIT);
if (nread <= 0 && !_is_udp) {
// the socket has reached EOF
close(_fd);
_fd = -1;
_connected = false;
fprintf(stdout, "Closed connection on SERIAL%u\n", _portNumber);
fflush(stdout);
#if defined(__CYGWIN__) || defined(__CYGWIN64__) || defined(CYGWIN_BUILD)
if (_portNumber == 0) {
// exit on cygwin port 0 is almost certainly closing the
// connection in MissionPlanner SITL. We want to exit or
// we leave a stray process which confuses restart
exit(0);
}
#endif
return;
}
}
if (nread > 0) {
_readbuffer.write((uint8_t *)buf, nread);
_receive_timestamp = AP_HAL::micros64();
}
}
void UARTDriver::_timer_tick(void)
{
handle_writing_from_writebuffer_to_device();
handle_reading_from_device_to_readbuffer();
}
/*
return timestamp estimate in microseconds for when the start of
a nbytes packet arrived on the uart. This should be treated as a
time constraint, not an exact time. It is guaranteed that the
packet did not start being received after this time, but it
could have been in a system buffer before the returned time.
This takes account of the baudrate of the link. For transports
that have no baudrate (such as USB) the time estimate may be
less accurate.
A return value of zero means the HAL does not support this API
*/
uint64_t UARTDriver::receive_time_constraint_us(uint16_t nbytes)
{
uint64_t last_receive_us = _receive_timestamp;
if (_uart_baudrate > 0) {
// assume 10 bits per byte.
uint32_t transport_time_us = (1000000UL * 10UL / _uart_baudrate) * (nbytes+available());
last_receive_us -= transport_time_us;
}
return last_receive_us;
}
ssize_t UARTDriver::get_system_outqueue_length() const
{
if (!_connected) {
return 0;
}
#if defined(__CYGWIN__) || defined(__CYGWIN64__) || defined(CYGWIN_BUILD)
return 0;
#elif defined(__APPLE__) && defined(__MACH__)
return 0;
#else
int size;
if (ioctl(_fd, TIOCOUTQ, &size) == -1) {
// ::fprintf(stderr, "ioctl TIOCOUTQ failed: %m\n");
return 0;
}
return size;
#endif
}
uint32_t UARTDriver::bw_in_bytes_per_second() const
{
// if connected, assume at least a 10/100Mbps connection if not limited
bool baud_limit = false;
#if !defined(HAL_BUILD_AP_PERIPH)
SITL::SIM *_sitl = AP::sitl();
baud_limit = (_sitl != nullptr) && _sitl->telem_baudlimit_enable;
#endif
const uint32_t bitrate = (_connected && !baud_limit) ? 10E6 : _uart_baudrate;
return bitrate/10; // convert bits to bytes minus overhead
};
#if HAL_UART_STATS_ENABLED
// request information on uart I/O for @SYS/uarts.txt for this uart
void UARTDriver::uart_info(ExpandingString &str, StatsTracker &stats, const uint32_t dt_ms)
{
const uint32_t tx_bytes = stats.tx.update(_tx_stats_bytes);
const uint32_t rx_bytes = stats.rx.update(_rx_stats_bytes);
str.printf("TX=%8u RX=%8u TXBD=%6u RXBD=%6u %s (%s)\n",
unsigned(tx_bytes),
unsigned(rx_bytes),
unsigned((tx_bytes * 10000) / dt_ms),
unsigned((rx_bytes * 10000) / dt_ms),
_connected ? "connected " : "not connected",
_sitlState->_serial_path[_portNumber]);
}
#endif
#endif // CONFIG_HAL_BOARD