#include #include "AC_Loiter.h" #include extern const AP_HAL::HAL& hal; #define LOITER_SPEED_DEFAULT 1250.0f // default loiter speed in cm/s #define LOITER_SPEED_MIN 20.0f // minimum loiter speed in cm/s #define LOITER_ACCEL_MAX_DEFAULT 500.0f // default acceleration in loiter mode #define LOITER_BRAKE_ACCEL_DEFAULT 250.0f // minimum acceleration in loiter mode #define LOITER_BRAKE_JERK_DEFAULT 500.0f // maximum jerk in cm/s/s/s in loiter mode #define LOITER_BRAKE_START_DELAY_DEFAULT 1.0f // delay (in seconds) before loiter braking begins after sticks are released #define LOITER_VEL_CORRECTION_MAX 200.0f // max speed used to correct position errors in loiter #define LOITER_POS_CORRECTION_MAX 200.0f // max position error in loiter #define LOITER_ACTIVE_TIMEOUT_MS 200 // loiter controller is considered active if it has been called within the past 200ms (0.2 seconds) const AP_Param::GroupInfo AC_Loiter::var_info[] = { // @Param: ANG_MAX // @DisplayName: Loiter pilot angle max // @Description{Copter, Sub}: Loiter maximum pilot requested lean angle. Set to zero for 2/3 of PSC_ANGLE_MAX/ANGLE_MAX. The maximum vehicle lean angle is still limited by PSC_ANGLE_MAX/ANGLE_MAX // @Description{Plane}: Loiter maximum pilot requested lean angle. Set to zero for 2/3 of Q_P_ANGLE_MAX/Q_ANGLE_MAX. The maximum vehicle lean angle is still limited by Q_P_ANGLE_MAX/Q_ANGLE_MAX // @Units: deg // @Range: 0 45 // @Increment: 1 // @User: Advanced AP_GROUPINFO("ANG_MAX", 1, AC_Loiter, _angle_max, 0.0f), // @Param: SPEED // @DisplayName: Loiter Horizontal Maximum Speed // @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode // @Units: cm/s // @Range: 20 3500 // @Increment: 50 // @User: Standard AP_GROUPINFO("SPEED", 2, AC_Loiter, _speed_cms, LOITER_SPEED_DEFAULT), // @Param: ACC_MAX // @DisplayName: Loiter maximum correction acceleration // @Description: Loiter maximum correction acceleration in cm/s/s. Higher values cause the copter to correct position errors more aggressively. // @Units: cm/s/s // @Range: 100 981 // @Increment: 1 // @User: Advanced AP_GROUPINFO("ACC_MAX", 3, AC_Loiter, _accel_cmss, LOITER_ACCEL_MAX_DEFAULT), // @Param: BRK_ACCEL // @DisplayName: Loiter braking acceleration // @Description: Loiter braking acceleration in cm/s/s. Higher values stop the copter more quickly when the stick is centered. // @Units: cm/s/s // @Range: 25 250 // @Increment: 1 // @User: Advanced AP_GROUPINFO("BRK_ACCEL", 4, AC_Loiter, _brake_accel_cmss, LOITER_BRAKE_ACCEL_DEFAULT), // @Param: BRK_JERK // @DisplayName: Loiter braking jerk // @Description: Loiter braking jerk in cm/s/s/s. Higher values will remove braking faster if the pilot moves the sticks during a braking maneuver. // @Units: cm/s/s/s // @Range: 500 5000 // @Increment: 1 // @User: Advanced AP_GROUPINFO("BRK_JERK", 5, AC_Loiter, _brake_jerk_max_cmsss, LOITER_BRAKE_JERK_DEFAULT), // @Param: BRK_DELAY // @DisplayName: Loiter brake start delay (in seconds) // @Description: Loiter brake start delay (in seconds) // @Units: s // @Range: 0 2 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("BRK_DELAY", 6, AC_Loiter, _brake_delay, LOITER_BRAKE_START_DELAY_DEFAULT), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_Loiter::AC_Loiter(const AP_InertialNav& inav, const AP_AHRS_View& ahrs, AC_PosControl& pos_control, const AC_AttitudeControl& attitude_control) : _inav(inav), _ahrs(ahrs), _pos_control(pos_control), _attitude_control(attitude_control) { AP_Param::setup_object_defaults(this, var_info); } /// init_target to a position in cm from ekf origin void AC_Loiter::init_target(const Vector2f& position) { sanity_check_params(); // initialise position controller speed and acceleration _pos_control.set_correction_speed_accel_xy(LOITER_VEL_CORRECTION_MAX, _accel_cmss); _pos_control.set_pos_error_max_xy_cm(LOITER_POS_CORRECTION_MAX); // initialise position controller _pos_control.init_xy_controller_stopping_point(); // initialise desired acceleration and angles to zero to remain on station _predicted_accel.zero(); _desired_accel.zero(); _predicted_euler_angle.zero(); _brake_accel = 0.0f; // set target position _pos_control.set_pos_target_xy_cm(position.x, position.y); } /// initialize's position and feed-forward velocity from current pos and velocity void AC_Loiter::init_target() { sanity_check_params(); // initialise position controller speed and acceleration _pos_control.set_correction_speed_accel_xy(LOITER_VEL_CORRECTION_MAX, _accel_cmss); _pos_control.set_pos_error_max_xy_cm(LOITER_POS_CORRECTION_MAX); // initialise position controller _pos_control.init_xy_controller(); // initialise predicted acceleration and angles from the position controller _predicted_accel.x = _pos_control.get_accel_target_cmss().x; _predicted_accel.y = _pos_control.get_accel_target_cmss().y; _predicted_euler_angle.x = radians(_pos_control.get_roll_cd()*0.01f); _predicted_euler_angle.y = radians(_pos_control.get_pitch_cd()*0.01f); _brake_accel = 0.0f; } /// reduce response for landing void AC_Loiter::soften_for_landing() { const Vector3f& curr_pos = _inav.get_position_neu_cm(); // set target position to current position _pos_control.set_pos_target_xy_cm(curr_pos.x, curr_pos.y); // also prevent I term build up in xy velocity controller. Note // that this flag is reset on each loop, in update_xy_controller() _pos_control.set_externally_limited_xy(); } /// set pilot desired acceleration in centi-degrees // dt should be the time (in seconds) since the last call to this function void AC_Loiter::set_pilot_desired_acceleration(float euler_roll_angle_cd, float euler_pitch_angle_cd) { const float dt = _pos_control.get_dt(); // Convert from centidegrees on public interface to radians const float euler_roll_angle = radians(euler_roll_angle_cd*0.01f); const float euler_pitch_angle = radians(euler_pitch_angle_cd*0.01f); // convert our desired attitude to an acceleration vector assuming we are not accelerating vertically const Vector3f desired_euler {euler_roll_angle, euler_pitch_angle, _ahrs.yaw}; const Vector3f desired_accel = _pos_control.lean_angles_to_accel(desired_euler); _desired_accel.x = desired_accel.x; _desired_accel.y = desired_accel.y; // difference between where we think we should be and where we want to be Vector2f angle_error(wrap_PI(euler_roll_angle - _predicted_euler_angle.x), wrap_PI(euler_pitch_angle - _predicted_euler_angle.y)); // calculate the angular velocity that we would expect given our desired and predicted attitude _attitude_control.input_shaping_rate_predictor(angle_error, _predicted_euler_rate, dt); // update our predicted attitude based on our predicted angular velocity _predicted_euler_angle += _predicted_euler_rate * dt; // convert our predicted attitude to an acceleration vector assuming we are not accelerating vertically const Vector3f predicted_euler {_predicted_euler_angle.x, _predicted_euler_angle.y, _ahrs.yaw}; const Vector3f predicted_accel = _pos_control.lean_angles_to_accel(predicted_euler); _predicted_accel.x = predicted_accel.x; _predicted_accel.y = predicted_accel.y; } /// get vector to stopping point based on a horizontal position and velocity void AC_Loiter::get_stopping_point_xy(Vector2f& stopping_point) const { Vector2p stop; _pos_control.get_stopping_point_xy_cm(stop); stopping_point = stop.tofloat(); } /// get maximum lean angle when using loiter float AC_Loiter::get_angle_max_cd() const { if (!is_positive(_angle_max)) { return MIN(_attitude_control.lean_angle_max_cd(), _pos_control.get_lean_angle_max_cd()) * (2.0f/3.0f); } return MIN(_angle_max*100.0f, _pos_control.get_lean_angle_max_cd()); } /// run the loiter controller void AC_Loiter::update(bool avoidance_on) { calc_desired_velocity(_pos_control.get_dt(), avoidance_on); _pos_control.update_xy_controller(); } // sanity check parameters void AC_Loiter::sanity_check_params() { _speed_cms = MAX(_speed_cms, LOITER_SPEED_MIN); _accel_cmss = MIN(_accel_cmss, GRAVITY_MSS * 100.0f * tanf(ToRad(_attitude_control.lean_angle_max_cd() * 0.01f))); } /// calc_desired_velocity - updates desired velocity (i.e. feed forward) with pilot requested acceleration and fake wind resistance /// updated velocity sent directly to position controller void AC_Loiter::calc_desired_velocity(float nav_dt, bool avoidance_on) { float ekfGndSpdLimit, ahrsControlScaleXY; AP::ahrs().getControlLimits(ekfGndSpdLimit, ahrsControlScaleXY); // calculate a loiter speed limit which is the minimum of the value set by the LOITER_SPEED // parameter and the value set by the EKF to observe optical flow limits float gnd_speed_limit_cms = MIN(_speed_cms, ekfGndSpdLimit*100.0f); gnd_speed_limit_cms = MAX(gnd_speed_limit_cms, LOITER_SPEED_MIN); float pilot_acceleration_max = GRAVITY_MSS*100.0f * tanf(radians(get_angle_max_cd()*0.01f)); // range check nav_dt if (nav_dt < 0) { return; } // get loiters desired velocity from the position controller where it is being stored. const Vector3f &desired_vel_3d = _pos_control.get_vel_desired_cms(); Vector2f desired_vel{desired_vel_3d.x,desired_vel_3d.y}; // update the desired velocity using our predicted acceleration desired_vel.x += _predicted_accel.x * nav_dt; desired_vel.y += _predicted_accel.y * nav_dt; Vector2f loiter_accel_brake; float desired_speed = desired_vel.length(); if (!is_zero(desired_speed)) { Vector2f desired_vel_norm = desired_vel/desired_speed; // TODO: consider using a velocity squared relationship like // pilot_acceleration_max*(desired_speed/gnd_speed_limit_cms)^2; // the drag characteristic of a multirotor should be examined to generate a curve // we could add a expo function here to fine tune it // calculate a drag acceleration based on the desired speed. float drag_decel = pilot_acceleration_max*desired_speed/gnd_speed_limit_cms; // calculate a braking acceleration if sticks are at zero float loiter_brake_accel = 0.0f; if (_desired_accel.is_zero()) { if ((AP_HAL::millis()-_brake_timer) > _brake_delay * 1000.0f) { float brake_gain = _pos_control.get_vel_xy_pid().kP() * 0.5f; loiter_brake_accel = constrain_float(sqrt_controller(desired_speed, brake_gain, _brake_jerk_max_cmsss, nav_dt), 0.0f, _brake_accel_cmss); } } else { loiter_brake_accel = 0.0f; _brake_timer = AP_HAL::millis(); } _brake_accel += constrain_float(loiter_brake_accel-_brake_accel, -_brake_jerk_max_cmsss*nav_dt, _brake_jerk_max_cmsss*nav_dt); loiter_accel_brake = desired_vel_norm*_brake_accel; // update the desired velocity using the drag and braking accelerations desired_speed = MAX(desired_speed-(drag_decel+_brake_accel)*nav_dt,0.0f); desired_vel = desired_vel_norm*desired_speed; } // add braking to the desired acceleration _desired_accel -= loiter_accel_brake; // Apply EKF limit to desired velocity - this limit is calculated by the EKF and adjusted as required to ensure certain sensor limits are respected (eg optical flow sensing) float horizSpdDem = desired_vel.length(); if (horizSpdDem > gnd_speed_limit_cms) { desired_vel.x = desired_vel.x * gnd_speed_limit_cms / horizSpdDem; desired_vel.y = desired_vel.y * gnd_speed_limit_cms / horizSpdDem; } #if !APM_BUILD_TYPE(APM_BUILD_ArduPlane) if (avoidance_on) { // Limit the velocity to prevent fence violations // TODO: We need to also limit the _desired_accel AC_Avoid *_avoid = AP::ac_avoid(); if (_avoid != nullptr) { Vector3f avoidance_vel_3d{desired_vel.x, desired_vel.y, 0.0f}; _avoid->adjust_velocity(avoidance_vel_3d, _pos_control.get_pos_xy_p().kP(), _accel_cmss, _pos_control.get_pos_z_p().kP(), _pos_control.get_max_accel_z_cmss(), nav_dt); desired_vel = Vector2f{avoidance_vel_3d.x, avoidance_vel_3d.y}; } } #endif // !APM_BUILD_ArduPlane // get loiters desired velocity from the position controller where it is being stored. Vector2p target_pos = _pos_control.get_pos_target_cm().xy(); // update the target position using our predicted velocity target_pos += (desired_vel * nav_dt).topostype(); // send adjusted feed forward acceleration and velocity back to the Position Controller _pos_control.set_pos_vel_accel_xy(target_pos, desired_vel, _desired_accel); }