/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include #include #include #include #define PROXIMITY_MAX_INSTANCES 1 // Maximum number of proximity sensor instances available on this platform #define PROXIMITY_MAX_IGNORE 6 // up to six areas can be ignored #define PROXIMITY_MAX_DIRECTION 8 #define PROXIMITY_SENSOR_ID_START 10 class AP_Proximity_Backend; class AP_Proximity { public: friend class AP_Proximity_Backend; AP_Proximity(); AP_Proximity(const AP_Proximity &other) = delete; AP_Proximity &operator=(const AP_Proximity) = delete; // Proximity driver types enum class Type { None = 0, SF40C = 1, MAV = 2, TRTOWER = 3, RangeFinder = 4, RPLidarA2 = 5, TRTOWEREVO = 6, #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL = 10, MorseSITL = 11, AirSimSITL = 12, #endif }; enum Proximity_Status { Proximity_NotConnected = 0, Proximity_NoData, Proximity_Good }; // structure holding distances in PROXIMITY_MAX_DIRECTION directions. used for sending distances to ground station struct Proximity_Distance_Array { uint8_t orientation[PROXIMITY_MAX_DIRECTION]; // orientation (i.e. rough direction) of the distance (see MAV_SENSOR_ORIENTATION) float distance[PROXIMITY_MAX_DIRECTION]; // distance in meters }; // detect and initialise any available proximity sensors void init(void); // update state of all proximity sensors. Should be called at high rate from main loop void update(void); // set pointer to rangefinder object void set_rangefinder(const class RangeFinder *rangefinder) { _rangefinder = rangefinder; } const RangeFinder *get_rangefinder() const { return _rangefinder; } // return sensor orientation and yaw correction uint8_t get_orientation(uint8_t instance) const; int16_t get_yaw_correction(uint8_t instance) const; // return sensor health Proximity_Status get_status(uint8_t instance) const; Proximity_Status get_status() const; // Return the number of proximity sensors uint8_t num_sensors(void) const { return num_instances; } // get distance in meters in a particular direction in degrees (0 is forward, clockwise) // returns true on successful read and places distance in distance bool get_horizontal_distance(uint8_t instance, float angle_deg, float &distance) const; bool get_horizontal_distance(float angle_deg, float &distance) const; // get distances in PROXIMITY_MAX_DIRECTION directions. used for sending distances to ground station bool get_horizontal_distances(Proximity_Distance_Array &prx_dist_array) const; // get boundary points around vehicle for use by avoidance // returns nullptr and sets num_points to zero if no boundary can be returned const Vector2f* get_boundary_points(uint8_t instance, uint16_t& num_points) const; const Vector2f* get_boundary_points(uint16_t& num_points) const; // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool get_closest_object(float& angle_deg, float &distance) const; // get number of objects, angle and distance - used for non-GPS avoidance uint8_t get_object_count() const; bool get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const; // get maximum and minimum distances (in meters) of primary sensor float distance_max() const; float distance_min() const; // handle mavlink DISTANCE_SENSOR messages void handle_msg(const mavlink_message_t &msg); // The Proximity_State structure is filled in by the backend driver struct Proximity_State { uint8_t instance; // the instance number of this proximity sensor enum Proximity_Status status; // sensor status }; // // support for upward facing sensors // // get distance upwards in meters. returns true on success bool get_upward_distance(uint8_t instance, float &distance) const; bool get_upward_distance(float &distance) const; Type get_type(uint8_t instance) const; // parameter list static const struct AP_Param::GroupInfo var_info[]; static AP_Proximity *get_singleton(void) { return _singleton; }; // methods for mavlink SYS_STATUS message (send_sys_status) // these methods cover only the primary instance bool sensor_present() const; bool sensor_enabled() const; bool sensor_failed() const; private: static AP_Proximity *_singleton; Proximity_State state[PROXIMITY_MAX_INSTANCES]; AP_Proximity_Backend *drivers[PROXIMITY_MAX_INSTANCES]; const RangeFinder *_rangefinder; uint8_t primary_instance; uint8_t num_instances; bool valid_instance(uint8_t i) const { if (drivers[i] == nullptr) { return false; } return (Type)_type[i].get() != Type::None; } // parameters for all instances AP_Int8 _type[PROXIMITY_MAX_INSTANCES]; AP_Int8 _orientation[PROXIMITY_MAX_INSTANCES]; AP_Int16 _yaw_correction[PROXIMITY_MAX_INSTANCES]; AP_Int16 _ignore_angle_deg[PROXIMITY_MAX_IGNORE]; // angle (in degrees) of area that should be ignored by sensor (i.e. leg shows up) AP_Int8 _ignore_width_deg[PROXIMITY_MAX_IGNORE]; // width of beam (in degrees) that should be ignored void detect_instance(uint8_t instance); }; namespace AP { AP_Proximity *proximity(); };